ﻻ يوجد ملخص باللغة العربية
The CoRoT (COnvection, internal ROtation and Transiting planets) space mission was launched in the last days of 2006, becoming the first major space mission dedicated to the search for and study of exoplanets, as well as doing the same for asteroseismological studies of stars. Designed as a small mission, it became highly successful, with, among other things discovering the first planet proved by the measurements of its radius and mass to be definitely Rocky or Earth like in its composition and the first close-in brown dwarf with a measured radius. Designed for a lifetime of 3 years it survived in a 900 km orbit around the Earth for 6 years discovering in total 37 planetary systems or brown dwarfs, as well as about one hundred planet candidates and 2269 eclipsing binaires, detached or in contact. In total CoRoT acquired 177 454 light curves, varying in duration from about 30 - 150 days. CoRoT was also a pioneer in the organisation and archiving of such an exoplanetary survey. The development and utilization of this spacecraft has left a legacy of knowledge, both as what concerns the scientific objectives as well as the technical know-how, that is currently being utilized in the construction of the European CHEOPS and PLATO missions.
Context. We present the discovery of two transiting extrasolar planets by the satellite CoRoT. Aims. We aim at a characterization of the planetary bulk parameters, which allow us to further investigate the formation and evolution of the planetary sys
We have initiated a dedicated project to follow-up with ground-based photometry the transiting planets discovered by CoRoT in order to refine the orbital elements, constrain their physical parameters and search for additional bodies in the system. Fr
Context. The launch of the exoplanet space missions obtaining exquisite photometry from space has resulted in the discovery of thousands of planetary systems with very different physical properties and architectures. Among them, the exoplanet CoRoT-2
We present VLT eclipse photometry for the giant planet CoRoT-1b. We observed a transit in the R-band filter and an occultation in a narrow filter centered on 2.09 microns. Our analysis of this new photometry and published radial velocities, in combin
Aims. The CoRoT space mission continues to photometrically monitor about 12 000 stars in its field-of-view for a series of target fields to search for transiting extrasolar planets ever since 2007. Deep transit signals can be detected quickly in the