ﻻ يوجد ملخص باللغة العربية
The origin of extended emissions following prompt emissions of short gamma-ray bursts (SGRBs) is in mystery. The long-term activity of the extended emission is responsible for promising electromagnetic counterparts to gravitational waves and, so that it may be a key to uncovering the progenitor of SGRBs. We investigate the early X-ray light curves of 26 SGRBs with known redshifts observed with the X-Ray Telescope aboard the {it Neil Gehrels Swift Observatory} ({it Swift}). We find that the exponential temporal decay model is able to describe the extended emissions comprehensively with a rest-frame e-folding time of 20 -- 200 seconds. We also estimate the isotropic equivalent energies of the extended emission with the exponential decay model and of the prompt emission, compared with those of the prompt emission. Then, it is revealed that the extended emission is 0 -- 3 orders of magnitude less powerful than the prompt emission. We find a strong correlation between the expected maximum luminosity and e-folding time which can be described by a power-law with an index of $-3.3$ and whose chance probability of $8.2times10^{-6}$ if there is no observation bias of {it Swift}. The exponential temporal decay may be interpreted to come from the spin-down time scale of the rotation energy of a highly magnetized neutron star, and/or fallback accretion onto a disk surrounding a black hole with an exponentially decaying magnetic flux by magnetic reconnection.
We investigate the possible origin of extended emissions (EEs) of short gamma-ray bursts with an isotropic energy of ~ 10^(50-51) erg and a duration of a few 10 s to ~ 100 s, based on a compact binary (neutron star (NS)-NS or NS-black hole (BH)) merg
The recent association of several short gamma-ray bursts (GRBs) with early type galaxies with low star formation rate demonstrates that short bursts arise from a different progenitor mechanism than long bursts. However, since the duration distributio
The initial pulse complex (IPC) in short gamma-ray bursts is sometimes accompanied by a softer, low-intensity extended emission (EE) component. In cases where such a component is not observed, it is not clear if it is present but below the detection
A binary neutron star (BNS) merger has been widely argued to be one of the progenitors of a short gamma-ray burst (SGRB). This central engine can be verified if its gravitational-wave (GW) event is detected simultaneously. Once confirmed, this kind o
Some short GRBs are followed by longer extended emission, lasting anywhere from ~10 to ~100 s. These short GRBs with extended emission (EE) can possess observational characteristics of both short and long GRBs (as represented by GRB 060614), and the