ﻻ يوجد ملخص باللغة العربية
Orbital differentiation is a common theme in multiorbital systems, yet a complete understanding of it is still missing. Here, we consider a minimal model for orbital differentiation in Hund metals with a highly accurate method: We use the numerical renormalization group as a real-frequency impurity solver for a dynamical mean-field study of three-orbital Hubbard models, where a crystal field shifts one orbital in energy. The individual phases are characterized with dynamic correlation functions and their relation to diverse Kondo temperatures. Upon approaching the orbital-selective Mott transition, we find a strongly suppressed spin coherence scale and uncover the emergence of a singular Fermi liquid and interband doublon-holon excitations. Our theory describes the diverse polarization-driven phenomena in the $t_{2g}$ bands of materials such as ruthenates and iron-based superconductors, and our methodological advances pave the way towards real-frequency analyses of strongly correlated materials.
To clarify the nature of correlations in Hund metals and its relationship with Mott physics we analyze the electronic correlations in multiorbital systems as a function of intraorbital interaction U, Hunds coupling JH and electronic filling n. We sho
Motivated by the recent discovery of superconductivity in infinite-layer nickelates RE$_{1-delta}$Sr$_delta$NiO$_2$ (RE$=$Nd, Pr), we study the role of Hunds coupling $J$ in a quarter-filled two-orbital Hubbard model which has been on the periphery o
Hund metals have attracted attention in recent years due to their unconventional superconductivity, which supposedly originates from non-Fermi-liquid (NFL) properties of the normal state. When studying Hund metals using dynamical mean-field theory, o
We study the photoinduced breakdown of a two-orbital Mott insulator and resulting metallic state. Using time-dependent density matrix renormalization group, we scrutinize the real-time dynamics of the half-filled two-orbital Hubbard model interacting
An antiferromagnetic Hund coupling in multiorbital Hubbard systems induces orbital freezing and an associated superconducting instability, as well as unique composite orders in the case of an odd number of orbitals. While the rich phase diagram of th