ترغب بنشر مسار تعليمي؟ اضغط هنا

Efficient verification of bosonic quantum channels via benchmarking

100   0   0.0 ( 0 )
 نشر من قبل Yadong Wu
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We aim to devise feasible, efficient verification schemes for bosonic channels. To this end, we construct an average-fidelity witness that yields a tight lower bound for average fidelity plus a general framework for verifying optimal quantum channels. For both multi-mode unitary Gaussian channels and single-mode amplification channels, we present experimentally feasible average-fidelity witnesses and reliable verification schemes, for which sample complexity scales polynomially with respect to all channel specification parameters. Our verification scheme provides an approach to benchmark the performance of bosonic channels on a set of Gaussian-distributed coherent states by employing only two-mode squeezed vacuum states and local homodyne detections. Our results demonstrate how to perform feasible tests of quantum components designed for continuous-variable quantum information processing.



قيم البحث

اقرأ أيضاً

As with classical information, error-correcting codes enable reliable transmission of quantum information through noisy or lossy channels. In contrast to the classical theory, imperfect quantum channels exhibit a strong kind of synergy: there exist p airs of discrete memoryless quantum channels, each of zero quantum capacity, which acquire positive quantum capacity when used together. Here we show that this superactivation phenomenon also occurs in the more realistic setting of optical channels with attenuation and Gaussian noise. This paves the way for its experimental realization and application in real-world communications systems.
In this paper, we extend the protocol of classical verification of quantum computations (CVQC) recently proposed by Mahadev to make the verification efficient. Our result is obtained in the following three steps: $bullet$ We show that parallel repe tition of Mahadevs protocol has negligible soundness error. This gives the first constant round CVQC protocol with negligible soundness error. In this part, we only assume the quantum hardness of the learning with error (LWE) problem similar to the Mahadevs work. $bullet$ We construct a two-round CVQC protocol in the quantum random oracle model (QROM) where a cryptographic hash function is idealized to be a random function. This is obtained by applying the Fiat-Shamir transform to the parallel repetition version of the Mahadevs protocol. $bullet$ We construct a two-round CVQC protocol with the efficient verifier in the CRS+QRO model where both prover and verifier can access to a (classical) common reference string generated by a trusted third party in addition to quantum access to QRO. Specifically, the verifier can verify a $QTIME(T)$ computation in time $poly(n,log T)$ where $n$ is the security parameter. For proving soundness, we assume that a standard model instantiation of our two-round protocol with a concrete hash function (say, SHA-3) is sound and the existence of post-quantum indistinguishability obfuscation and post-quantum fully homomorphic encryption in addition to the quantum hardness of the LWE problem.
92 - A. Vaziri , M.B. Plenio 2010
Recently it was demonstrated that long-lived quantum coherence exists during excitation energy transport in photosynthesis. It is a valid question up to which length, time and mass scales quantum coherence may extend, how to one may detect this coher ence and what if any role it plays for the dynamics of the system. Here we suggest that the selectivity filter of ion channels may exhibit quantum coherence which might be relevant for the process of ion selectivity and conduction. We show that quantum resonances could provide an alternative approch to ultrafast 2D spectroscopy to probe these quantum coherences. We demonstrate that the emergence of resonances in the conduction of ion channels that are modulated periodicallly by time dependent external electric fields can serve as signitures of quantum coherence in such a system. Assessments of experimental feasibility and specific paths towards the experimental realization of such experiments are presented. We show that this may be probed by direct 2-D spectroscopy or through the emergence of resonances in the conduction of ion channels that are modulated periodically by time dependent external electric fields.
A complete analysis of multi-mode bosonic Gaussian channels is proposed. We clarify the structure of unitary dilations of general Gaussian channels involving any number of bosonic modes and present a normal form. The maximum number of auxiliary modes that is needed is identified, including all rank deficient cases, and the specific role of additive classical noise is highlighted. By using this analysis, we derive a canonical matrix form of the noisy evolution of n-mode bosonic Gaussian channels and of their weak complementary counterparts, based on a recent generalization of the normal mode decomposition for non-symmetric or locality constrained situations. It allows us to simplify the weak-degradability classification. Moreover, we investigate the structure of some singular multi-mode channels, like the additive classical noise channel that can be used to decompose a noisy channel in terms of a less noisy one in order to find new sets of maps with zero quantum capacity. Finally, the two-mode case is analyzed in detail. By exploiting the composition rules of two-mode maps and the fact that anti-degradable channels cannot be used to transfer quantum information, we identify sets of two-mode bosonic channels with zero capacity.
We describe a scalable experimental protocol for obtaining estimates of the error rate of individual quantum computational gates. This protocol, in which random Clifford gates are interleaved between a gate of interest, provides a bounded estimate of the average error of the gate under test so long as the average variation of the noise affecting the full set of Clifford gates is small. This technique takes into account both state preparation and measurement errors and is scalable in the number of qubits. We apply this protocol to a superconducting qubit system and find gate errors that compare favorably with the gate errors extracted via quantum process tomography.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا