ﻻ يوجد ملخص باللغة العربية
We study the possibility of simultaneously addressing neutrino phenomenology and the dark matter in the framework of inverse seesaw. The model is the extension of the standard model by the addition of two right handed neutrinos and three sterile fermions which leads to a light sterile state with the mass in the keV range along with three light active neutrino states. The lightest sterile neutrino can account for a feasible dark matter(DM) candidate. We present a $S_{4}$ flavor symmetric model which is further augmented by $Z_{4}times Z_{3}$ symmetry to constrain the Yukawa Lagrangian. The structures of the mass matrices involved in inverse seesaw within the $S_{4}$ framework naturally give rise to correct neutrino mass matrix with non-zero reactor mixing angle $ theta_{13}$. In this framework, we conduct a detailed numerical analysis both for normal hierarchy as well as inverted hierarchy to obtain dark matter mass and DM-active mixing which are the key factors for considering sterile neutrino as a viable dark matter candidate. We constrain the parameter space of the model from the latest cosmological bounds on the mass of the dark matter and DM-active mixing.
We investigate a model in which Dark Matter is stabilized by means of a Z2 parity that results from the same non-abelian discrete flavor symmetry which accounts for the observed pattern of neutrino mixing. In our A4 example the standard model is exte
We present a comprehensive review of keV-scale sterile neutrino Dark Matter, collecting views and insights from all disciplines involved - cosmology, astrophysics, nuclear, and particle physics - in each case viewed from both theoretical and experime
We explore the possibility of a single generation of $keV$ scale sterile neutrino ($m_S$) as a dark matter candidate within the minimal extended seesaw (MES) framework and its influence in neutrinoless double beta decay ($0 ubetabeta$) study. Three h
We review sterile neutrinos as possible Dark Matter candidates. After a short summary on the role of neutrinos in cosmology and particle physics, we give a comprehensive overview of the current status of the research on sterile neutrino Dark Matter.
We consider the possibility of the lightest sterile neutrino dark matter which has dipole interaction with heavier sterile neutrinos. The lifetime can be long enough to be a dark matter candidate without violating other constraints and the correct am