ترغب بنشر مسار تعليمي؟ اضغط هنا

Heun algebras of Lie type

143   0   0.0 ( 0 )
 نشر من قبل Luc Vinet
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce Heun algebras of Lie type. They are obtained from bispectral pairs associated to simple or solvable Lie algebras of dimension three or four. For $mathfrak{su}(2)$, this leads to the Heun-Krawtchouk algebra. The corresponding Heun-Krawtchouk operator is identified as the Hamiltonian of the quantum analogue of the Zhukovski-Voltera gyrostat. For $mathfrak{su}(1,1)$, one obtains the Heun algebras attached to the Meixner, Meixner-Pollaczek and Laguerre polynomials. These Heun algebras are shown to be isomorphic the the Hahn algebra. Focusing on the harmonic oscillator algebra $mathfrak{ho}$ leads to the Heun-Charlier algebra. The connections to orthogonal polynomials are achieved through realizations of the underlying Lie algebras in terms of difference and differential operators. In the $mathfrak{su}(1,1)$ cases, it is observed that the Heun operator can be transformed into the Hahn, Continuous Hahn and Confluent Heun operators respectively.



قيم البحث

اقرأ أيضاً

388 - Tara Brough , Bettina Eick 2015
We investigate the graded Lie algebras of Cartan type $W$, $S$ and $H$ in characteristic 2 and determine their simple constituents and some exceptional isomorphisms between them. We also consider the graded Lie algebras of Cartan type $K$ in characte ristic 2 and conjecture that their simple constituents are isomorphic to Lie algebras of type $H$.
For a given abelian group G, we classify the isomorphism classes of G-gradings on the simple restricted Lie algebras of types W(m;1) and S(m;1) (m>=2), in terms of numerical and group-theoretical invariants. Our main tool is automorphism group scheme s, which we determine for the simple restricted Lie algebras of types S(m;1) and H(m;1). The ground field is assumed to be algebraically closed of characteristic p>3.
In this paper we initiate the study of the maximal subalgebras of exceptional simple classical Lie algebras g over algebraically closed fields k of positive characteristic p, such that the prime characteristic is good for g. In this paper we deal wit h what is surely the most unnatural case; that is, where the maximal subalgebra in question is a simple subalgebra of non-classical type. We show that only the first Witt algebra can occur as a subalgebra of g and give explicit details on when it may be maximal in g.
130 - Elisabeth Remm 2020
After recalling the notion of Lie algebroid, we construct these structures associated with contact forms or systems. We are then interested in particular classes of Lie Rinehart algebras.
249 - Frederic Chapoton 2007
We prove that free pre-Lie algebras, when considered as Lie algebras, are free. Working in the category of S-modules, we define a natural filtration on the space of generators. We also relate the symmetric group action on generators with the structure of the anticyclic PreLie operad.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا