ترغب بنشر مسار تعليمي؟ اضغط هنا

Ultra-low-power orbital-controlled magnetization switching using a ferromagnetic oxide interface

59   0   0.0 ( 0 )
 نشر من قبل Le Duc Anh Dr.
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A major challenge in spin-based electronics is reducing power consumption for magnetization switching of ferromagnets, which is being implemented by injecting a large spin-polarized current. The alternative approach is to control the magnetic anisotropy (MA) of the ferromagnet by an electric field. However, the voltage-induced MA is too weak to deterministically switch the magnetization without an assisting magnetic field, and the strategy towards this goal remains elusive. Here, we demonstrate a new scheme of orbital-controlled magnetization switching (OCMS): A sharp change in the MA is induced when the Fermi level is moved between energy bands with different orbital symmetries. Using a ferromagnetic oxide interface, we show that OCMS can be used to achieve a deterministic and magnetic-field-free 90 degree-magnetization switching solely by applying an extremely small electric field of 0.05 V/nm with a negligibly small current density of 10^-2 A/cm^2. Our results highlight the huge potential of band engineering in ferromagnetic materials for efficient magnetization control.



قيم البحث

اقرأ أيضاً

174 - Cezary Sliwa , Tomasz Dietl 2014
The relationship between the modern and classical Landaus approach to carrier orbital magnetization is studied theoretically within the envelope function approximation, taking ferromagnetic (Ga,Mn)As as an example. It is shown that while the evaluati on of hole magnetization within the modern theory does not require information on the band structure in a magnetic field, the number of basis wave functions must be much larger than in the Landau approach to achieve the same quantitative accuracy. A numerically efficient method is proposed, which takes advantages of these two theoretical schemes. The computed magnitude of orbital magnetization is in accord with experimental values obtained by x-ray magnetic circular dichroism in (III,Mn)V compounds. The direct effect of the magnetic field on the hole spectrum is studied too, and employed to interpret a dependence of the Coulomb blockade maxima on the magnetic field in a single electron transistor with a (Ga,Mn)As gate.
Understanding and controlling the interfacial magnetic properties of ferromagnetic thin films are crucial for spintronic device applications. However, using conventional magnetometry, it is difficult to detect them separately from the bulk properties . Here, by utilizing tunneling anisotropic magnetoresistance in a single-barrier heterostructure composed of La0.6Sr0.4MnO3 (LSMO)/ LaAlO3 (LAO)/ Nb-doped SrTiO3 (001), we reveal the presence of a peculiar strong two-fold magnetic anisotropy (MA) along the [110]c direction at the LSMO/LAO interface, which is not observed in bulk LSMO. This MA shows unknown behavior that the easy magnetization axis rotates by 90{deg} at an energy of 0.2 eV below the Fermi level in LSMO. We attribute this phenomenon to the transition between the eg and t2g bands at the LSMO interface. Our finding and approach to understanding the energy dependence of the MA demonstrate a new possibility of efficient control of the interfacial magnetic properties by controlling the band structures of oxide heterostructures.
Spin-orbit-torque (SOT) switching using the spin Hall effect (SHE) in heavy metals and topological insulators (TIs) has great potential for ultra-low power magnetoresistive random-access memory (MRAM). To be competitive with conventional spin-transfe r-torque (STT) switching, a pure spin current source with large spin Hall angle (${theta}_{SH}$ > 1) and high electrical conductivity (${sigma} > 10^5 {Omega}^{-1}m^{-1}$) is required. Here, we demonstrate such a pure spin current source: BiSb thin films with ${sigma}{sim}2.5*10^5 {Omega}^{-1}m^{-1}$, ${theta}_{SH}{sim}52$, and spin Hall conductivity ${sigma}_{SH}{sim}1.3*10^7 {hbar}/2e{Omega}^{-1}m^{-1}$ at room temperature. We show that BiSb thin films can generate a colossal spin-orbit field of 2770 Oe/(MA/cm$^2$) and a critical switching current density as low as 1.5 MA/cm$^2$ in Bi$_{0.9}$Sb$_{0.1}$ / MnGa bi-layers. BiSb is the best candidate for the first industrial application of topological insulators.
Electrical current manipulation of magnetization switching through spin-orbital coupling in ferromagnetic semiconductor (Ga,Mn)As Hall bar devices has been investigated. The efficiency of the current-controlled magnetization switching is found to be sensitive to the orientation of the current with respect to the crystalline axes. The dependence of the spin-orbit effective magnetic field on the direction and magnitude of the current is determined from the shifts in the magnetization switching angle. We find that the strain induced effective magnetic field is about three times as large as the Rashba induced magnetic field in our GaMnAs devices.
Using resonant X-ray spectroscopies combined with density functional calculations, we find an asymmetric bi-axial strain-induced $d$-orbital response in ultra-thin films of the correlated metal LaNiO$_3$ which are not accessible in the bulk. The sign of the misfit strain governs the stability of an octahedral breathing distortion, which, in turn, produces an emergent charge-ordered ground state with an altered ligand-hole density and bond covalency. Control of this new mechanism opens a pathway to rational orbital engineering, providing a platform for artificially designed Mott materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا