ترغب بنشر مسار تعليمي؟ اضغط هنا

Momentum-resolved lattice dynamics of parent and electron-doped Sr$_{2}$IrO$_{4}$

77   0   0.0 ( 0 )
 نشر من قبل Cameron Dashwood
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The mixing of orbital and spin character in the wave functions of the $5d$ iridates has led to predictions of strong couplings among their lattice, electronic and magnetic degrees of freedom. As well as realizing a novel spin-orbit assisted Mott-insulating ground state, the perovskite iridate Sr$_{2}$IrO$_{4}$ has strong similarities with the cuprate La$_{2}$CuO$_{4}$, which on doping hosts a charge-density wave that appears intimately connected to high-temperature superconductivity. These phenomena can be sensitively probed through momentum-resolved measurements of the lattice dynamics, made possible by meV-resolution inelastic x-ray scattering. Here we report the first such measurements for both parent and electron-doped Sr$_{2}$IrO$_{4}$. We find that the low-energy phonon dispersions and intensities in both compounds are well described by the same nonmagnetic density functional theory calculation. In the parent compound, no changes of the phonons on magnetic ordering are discernible within the experimental resolution, and in the doped compound no anomalies are apparent due to charge-density waves. These measurements extend our knowledge of the lattice properties of (Sr$_{1-x}$La$_{x}$)$_{2}$IrO$_{4}$ and constrain the couplings of the phonons to magnetic and charge order.

قيم البحث

اقرأ أيضاً

130 - M. P. M. Dean , Yue Cao , X. Liu 2016
Measuring how the magnetic correlations throughout the Brillouin zone evolve in a Mott insulator as charges are introduced dramatically improved our understanding of the pseudogap, non-Fermi liquids and high $T_C$ superconductivity. Recently, photoex citation has been used to induce similarly exotic states transiently. However, understanding how these states emerge has been limited because of a lack of available probes of magnetic correlations in the time domain, which hinders further investigation of how light can be used to control the properties of solids. Here we implement magnetic resonant inelastic X-ray scattering at a free electron laser, and directly determine the magnetization dynamics after photo-doping the Mott insulator Sr$_2$IrO$_4$. We find that the non-equilibrium state 2~ps after the excitation has strongly suppressed long-range magnetic order, but hosts photo-carriers that induce strong, non-thermal magnetic correlations. The magnetism recovers its two-dimensional (2D) in-plane Neel correlations on a timescale of a few ps, while the three-dimensional (3D) long-range magnetic order restores over a far longer, fluence-dependent timescale of a few hundred ps. The dramatic difference in these two timescales, implies that characterizing the dimensionality of magnetic correlations will be vital in our efforts to understand ultrafast magnetic dynamics.
We present a theoretical investigation of the effects of correlations on the electronic structure of the Mott insulator Sr$_2$IrO$_4$ upon electron doping. A rapid collapse of the Mott gap upon doping is found, and the electronic structure displays a strong momentum-space differentiation at low doping level: The Fermi surface consists of pockets centered around $(pi/2,pi/2)$, while a pseudogap opens near $(pi,0)$. Its physical origin is shown to be related to short-range spin correlations. The pseudogap closes upon increasing doping, but a differentiated regime characterized by a modulation of the spectral intensity along the Fermi surface persists to higher doping levels. These results, obtained within the cellular dynamical mean-field theory framework, are discussed in comparison to recent photoemission experiments and an overall good agreement is found.
We investigate the temporal evolution of electronic states in strontium iridate Sr$_2$IrO$_4$. The time resolved photoemission spectra of intrinsic, electron doped and the hole doped samples are monitored in identical experimental conditions. Our dat a on intrinsic and electron doped samples, show that primary doublon-holon pairs relax near to the chemical potential on a timescale shorter than $70$ fs. The subsequent cooling of low energy excitations takes place in two step: a rapid dynamics of $cong120$ fs is followed by a slower decay of $cong 1$ ps. The reported timescales endorse the analogies between Sr$_2$IrO$_4$ and copper oxides.
The magnetic excitations in electron doped (Sr$_{1-x}$La$_x$)$_2$IrO$_4$ with $x = 0.03$ were measured using resonant inelastic X-ray scattering at the Ir $L_3$-edge. Although much broadened, well defined dispersive magnetic excitations were observed . Comparing with the magnetic dispersion from the parent compound, the evolution of the magnetic excitations upon doping is highly anisotropic. Along the anti-nodal direction, the dispersion is almost intact. On the other hand, the magnetic excitations along the nodal direction show significant softening. These results establish the presence of strong magnetic correlations in electron doped Sr$_{1-x}$La$_x$)$_2$IrO$_4$ with close analogies to the hole doped cuprates, further motivating the search for high temperature superconductivity in this system.
Electric field effect (EFE) controlled magnetoelectric transport in thin films of undoped and La-doped Sr$_{2}$IrO$_{4}$ (SIO) were investigated under the action of ionic liquid gating. Despite large carrier density modulation, the temperature depend ent resistance measurements exhibit insulating behavior in chemically and EFE doped samples with the band filling up to 10%. The ambipolar transport across the Mott gap is demonstrated by EFE tuning of the activation energy. Further, we observe a crossover from a negative magnetoresistance (MR) at high temperatures to positive MR at low temperatures. The crossover temperature was around $sim$80-90 K, irrespective of the filling. This temperature and magnetic field dependent crossover is qualitatively associated with a change in the conduction mechanism from Mott to Coulomb gap mediated variable range hopping (VRH). This explains the origin of robust insulating ground state of SIO in electrical transport studies and highlights the importance of disorder and Coulombic interaction on electrical properties of SIO.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا