ترغب بنشر مسار تعليمي؟ اضغط هنا

Automatic Spelling Correction with Transformer for CTC-based End-to-End Speech Recognition

194   0   0.0 ( 0 )
 نشر من قبل ShiLiang Zhang
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

Connectionist Temporal Classification (CTC) based end-to-end speech recognition system usually need to incorporate an external language model by using WFST-based decoding in order to achieve promising results. This is more essential to Mandarin speech recognition since it owns a special phenomenon, namely homophone, which causes a lot of substitution errors. The linguistic information introduced by language model will help to distinguish these substitution errors. In this work, we propose a transformer based spelling correction model to automatically correct errors especially the substitution errors made by CTC-based Mandarin speech recognition system. Specifically, we investigate using the recognition results generated by CTC-based systems as input and the ground-truth transcriptions as output to train a transformer with encoder-decoder architecture, which is much similar to machine translation. Results in a 20,000 hours Mandarin speech recognition task show that the proposed spelling correction model can achieve a CER of 3.41%, which results in 22.9% and 53.2% relative improvement compared to the baseline CTC-based systems decoded with and without language model respectively.



قيم البحث

اقرأ أيضاً

The Transformer self-attention network has recently shown promising performance as an alternative to recurrent neural networks in end-to-end (E2E) automatic speech recognition (ASR) systems. However, Transformer has a drawback in that the entire inpu t sequence is required to compute self-attention. We have proposed a block processing method for the Transformer encoder by introducing a context-aware inheritance mechanism. An additional context embedding vector handed over from the previously processed block helps to encode not only local acoustic information but also global linguistic, channel, and speaker attributes. In this paper, we extend it towards an entire online E2E ASR system by introducing an online decoding process inspired by monotonic chunkwise attention (MoChA) into the Transformer decoder. Our novel MoChA training and inference algorithms exploit the unique properties of Transformer, whose attentions are not always monotonic or peaky, and have multiple heads and residual connections of the decoder layers. Evaluations of the Wall Street Journal (WSJ) and AISHELL-1 show that our proposed online Transformer decoder outperforms conventional chunkwise approaches.
Recently, Transformer has gained success in automatic speech recognition (ASR) field. However, it is challenging to deploy a Transformer-based end-to-end (E2E) model for online speech recognition. In this paper, we propose the Transformer-based onlin e CTC/attention E2E ASR architecture, which contains the chunk self-attention encoder (chunk-SAE) and the monotonic truncated attention (MTA) based self-attention decoder (SAD). Firstly, the chunk-SAE splits the speech into isolated chunks. To reduce the computational cost and improve the performance, we propose the state reuse chunk-SAE. Sencondly, the MTA based SAD truncates the speech features monotonically and performs attention on the truncated features. To support the online recognition, we integrate the state reuse chunk-SAE and the MTA based SAD into online CTC/attention architecture. We evaluate the proposed online models on the HKUST Mandarin ASR benchmark and achieve a 23.66% character error rate (CER) with a 320 ms latency. Our online model yields as little as 0.19% absolute CER degradation compared with the offline baseline, and achieves significant improvement over our prior work on Long Short-Term Memory (LSTM) based online E2E models.
Automatic speech recognition systems have been largely improved in the past few decades and current systems are mainly hybrid-based and end-to-end-based. The recently proposed CTC-CRF framework inherits the data-efficiency of the hybrid approach and the simplicity of the end-to-end approach. In this paper, we further advance CTC-CRF based ASR technique with explorations on modeling units and neural architectures. Specifically, we investigate techniques to enable the recently developed wordpiece modeling units and Conformer neural networks to be succesfully applied in CTC-CRFs. Experiments are conducted on two English datasets (Switchboard, Librispeech) and a German dataset from CommonVoice. Experimental results suggest that (i) Conformer can improve the recognition performance significantly; (ii) Wordpiece-based systems perform slightly worse compared with phone-based systems for the target language with a low degree of grapheme-phoneme correspondence (e.g. English), while the two systems can perform equally strong when such degree of correspondence is high for the target language (e.g. German).
Transformers are powerful neural architectures that allow integrating different modalities using attention mechanisms. In this paper, we leverage the neural transformer architectures for multi-channel speech recognition systems, where the spectral an d spatial information collected from different microphones are integrated using attention layers. Our multi-channel transformer network mainly consists of three parts: channel-wise self attention layers (CSA), cross-channel attention layers (CCA), and multi-channel encoder-decoder attention layers (EDA). The CSA and CCA layers encode the contextual relationship within and between channels and across time, respectively. The channel-attended outputs from CSA and CCA are then fed into the EDA layers to help decode the next token given the preceding ones. The experiments show that in a far-field in-house dataset, our method outperforms the baseline single-channel transformer, as well as the super-directive and neural beamformers cascaded with the transformers.
257 - Xinpei Zhou , Jiwei Li , Xi Zhou 2018
Automatic speech recognition (ASR) tasks are resolved by end-to-end deep learning models, which benefits us by less preparation of raw data, and easier transformation between languages. We propose a novel end-to-end deep learning model architecture n amely cascaded CNN-resBiLSTM-CTC. In the proposed model, we add residual blocks in BiLSTM layers to extract sophisticated phoneme and semantic information together, and apply cascaded structure to pay more attention mining information of hard negative samples. By applying both simple Fast Fourier Transform (FFT) technique and n-gram language model (LM) rescoring method, we manage to achieve word error rate (WER) of 3.41% on LibriSpeech test clean corpora. Furthermore, we propose a new batch-varied method to speed up the training process in length-varied tasks, which result in 25% less training time.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا