ﻻ يوجد ملخص باللغة العربية
It is usually assumed that the stellar initial mass function (IMF) takes a universal form and that there exists a direct mapping between this and the distribution of natal core masses (the core mass function, CMF). The IMF and CMF have been best characterized in the Solar neighborhood. Beyond 500~pc from the Sun, in diverse environments where metallicity varies and massive star feedback may dominate, the IMF has been measured only incompletely and imprecisely, while the CMF has hardly been measured at all. In order to establish if the IMF and CMF are indeed universal and related to each other, it is necessary to: 1) perform multi-wavelength large-scale imaging and spectroscopic surveys of different environments across the Galaxy; 2) require an angular resolution of < 0.1 in the optical/near-IR for stars and < 5 in the far-IR for cores; 3) achieve far-IR sensitivities to probe 0.1~Msol cores at 2--3 kpc.
The problem of the origin of the elements is a fundamental one in astronomy and one that has many open questions. Prominent examples include (1) the nature of Type Ia supernovae and the timescale of their contributions; (2) the observational identifi
Astrophotonics is the application of versatile photonic technologies to channel, manipulate, and disperse guided light from one or more telescopes to achieve scientific objectives in astronomy in an efficient and cost-effective way. The developments
The L/T transition is an important evolutionary phase in brown dwarf atmospheres, providing us with a unique opportunity to explore the effects of clouds, convection, winds, gravity and metallicity across a very narrow temperature range. Understandin
We propose an experiment, the Cosmic Accelerometer, designed to yield velocity precision of $leq 1$ cm/s with measurement stability over years to decades. The first-phase Cosmic Accelerometer, which is at the scale of the Astro2020 Small programs, wi
We review recent advances in our understanding of the origin of the initial mass function (IMF). We emphasize the use of numerical simulations to investigate how each physical process involved in star formation affects the resulting IMF. We stress th