ﻻ يوجد ملخص باللغة العربية
We study luminous dark matter signals in models with inelastic scattering. Dark matter $chi_1$ that scatters inelastically off elements in the Earth is kicked into an excited state $chi_2$ that can subsequently decay into a monoenergetic photon inside a detector. The photon signal exhibits large sidereal-daily modulation due to the daily rotation of the Earth and anisotropies in the problem: the dark matter wind comes from the direction of Cygnus due to the Suns motion relative to the galaxy, and the rock overburden is anisotropic, as is the dark matter scattering angle. This allows outstanding separation of signal from backgrounds. We investigate the sensitivity of two classes of large underground detectors to this modulating photon line signal: large liquid scintillator neutrino experiments, including Borexino and JUNO, and the proposed large gaseous scintillator directional detection experiment CYGNUS. Borexinos (JUNOs) sensitivity exceeds the bounds from xenon experiments on inelastic nuclear recoil for mass splittings $delta gtrsim 240 (180)$ keV, and is the only probe of inelastic dark matter for ${350 text{ keV} lesssim delta lesssim 600 text{ keV}}$. CYGNUSs sensitivity is at least comparable to xenon experiments with $sim 10 ; {rm m}^3$ volume detector for $delta lesssim 150$ keV, and could be substantially better with larger volumes and improved background rejection. Such improvements lead to the unusual situation that the inelastic signal becomes the superior way to search for dark matter even if the elastic and inelastic scattering cross sections are comparable.
Light dark sectors in thermal contact with the Standard Model naturally produce the observed relic dark matter abundance and are the targets of a broad experimental search program. A key light dark sector model is the pseudo-Dirac fermion with a dark
Peaking consistently in June for nearly eleven years, the annual modulation signal reported by DAMA/NaI and DAMA/LIBRA offers strong evidence for the identity of dark matter. DAMAs signal strongly suggest that dark matter inelastically scatters into
The signatures of dark matter at the LHC commonly involve, in simplified scenarios, the production of a single particle plus large missing energy, from the undetected dark matter. However, in $Z$-portal scenarios anomaly cancellation requires the pre
Composite dark matter is a natural setting for implementing inelastic dark matter - the O(100 keV) mass splitting arises from spin-spin interactions of constituent fermions. In models where the constituents are charged under an axial U(1) gauge symme
We consider the singlet scalar model of dark matter and study the expected antiproton and positron signals from dark matter annihilations. The regions of the viable parameter space of the model that are excluded by present data are determined, as wel