ترغب بنشر مسار تعليمي؟ اضغط هنا

The Spectral Representation of Homogeneous Spin-Weighted Random Fields on the Sphere

49   0   0.0 ( 0 )
 نشر من قبل Nicolas Tessore
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Nicolas Tessore




اسأل ChatGPT حول البحث

This is a direct computation of the spectral representation of homogeneous spin-weighted spherical random fields with arbitrary integer spin. It generalises known results from Cosmology for the spin-2 Cosmic Microwave Background polarisation and Cosmic Shear fields, without decomposition into $E$- and $B$-modes. The derivation uses an instructive representation of spin-weighted spherical functions over the Spin(3) group, where the transformation behaviour of spin-weighted fields can be treated more naturally than over the sphere, and where the group nature of Spin(3) greatly simplifies calculations for homogeneous spherical fields. It is shown that i) different modes of spin-weighted spherical random fields are generally uncorrelated, ii) the usual definition of the power spectrum generalises, iii) there is a simple relation to recover the correlation function from the power spectrum, and iv) the spectral representation is a sufficient condition for homogeneity of the fields.

قيم البحث

اقرأ أيضاً

Many applications in science call for the numerical simulation of systems on manifolds with spherical topology. Through use of integer spin weighted spherical harmonics we present a method which allows for the implementation of arbitrary tensorial ev olution equations. Our method combines two numerical techniques that were originally developed with different applications in mind. The first is Huffenberger and Wandelts spectral decomposition algorithm to perform the mapping from physical to spectral space. The second is the application of Luscombe and Lubans method, to convert numerically divergent linear recursions into stable nonlinear recursions, to the calculation of reduced Wigner d-functions. We give a detailed discussion of the theory and numerical implementation of our algorithm. The properties of our method are investigated by solving the scalar and vectorial advection equation on the sphere, as well as the 2+1 Maxwell equations on a deformed sphere.
We establish spectral expansions of homogeneous and isotropic random fields taking values in the $3$-dimensional Euclidean space $E^3$ and in the space $mathsf{S}^2(E^3)$ of symmetric rank $2$ tensors over $E^3$. The former is a model of turbulent fl uid velocity, while the latter is a model for the random stress tensor or the random conductivity tensor. We found a link between the theory of random fields and the theory of finite-dimensional convex compacta.
Series expansions of isotropic Gaussian random fields on $mathbb{S}^2$ with independent Gaussian coefficients and localized basis functions are constructed. Such representations provide an alternative to the standard Karhunen-Lo`eve expansions of iso tropic random fields in terms of spherical harmonics. Their multilevel localized structure of basis functions is especially useful in adaptive algorithms. The basis functions are obtained by applying the square root of the covariance operator to spherical needlets. Localization of the resulting covariance-dependent multilevel basis is shown under decay conditions on the angular power spectrum of the random field. In addition, numerical illustrations are given and an application to random elliptic PDEs on the sphere is analyzed.
We present a new spectral scheme for analysing functions of half-integer spin-weight on the $2$-sphere and demonstrate the stability and convergence properties of our implementation. The dynamical evolution of the Dirac equation on a manifold with sp atial topology of $mathbb{S}^2$ via pseudo-spectral method is also demonstrated.
This paper develops a fractional stochastic partial differential equation (SPDE) to model the evolution of a random tangent vector field on the unit sphere. The SPDE is governed by a fractional diffusion operator to model the L{e}vy-type behaviour of the spatial solution, a fractional derivative in time to depict the intermittency of its temporal solution, and is driven by vector-valued fractional Brownian motion on the unit sphere to characterize its temporal long-range dependence. The solution to the SPDE is presented in the form of the Karhunen-Lo`{e}ve expansion in terms of vector spherical harmonics. Its covariance matrix function is established as a tensor field on the unit sphere that is an expansion of Legendre tensor kernels. The variance of the increments and approximations to the solutions are studied and convergence rates of the approximation errors are given. It is demonstrated how these convergence rates depend on the decay of the power spectrum and variances of the fractional Brownian motion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا