ﻻ يوجد ملخص باللغة العربية
We introduce the general class of symmetric two-qubit states guaranteeing the perfect correlation or anticorrelation of Alice and Bob outcomes whenever some spin observable is measured at both sites. We prove that, for all states from this class, the maximal violation of the original Bell inequality is upper bounded by 3/2 and specify the two-qubit states where this quantum upper bound is attained. The case of two-qutrit states is more complicated. Here, for all two-qutrit states, we obtain the same upper bound 3/2 for violation of the original Bell inequality under Alice and Bob spin measurements, but we have not yet been able to show that this quantum upper bound is the least one. We discuss experimental consequences of our mathematical study.
For an even qudit dimension $dgeq 2,$ we introduce a class of two-qudit states exhibiting perfect correlations/anticorrelations and prove via the generalized Gell-Mann representation that, for each two-qudit state from this class, the maximal violati
We formulate and prove the main properties of the generalized Gell-Mann representation for traceless qudit observables with eigenvalues in $[-1,1]$ and analyze via this representation violation of the CHSH inequality by a general two-qudit state. For
Quantum systems with a finite number of states at all times have been a primary element of many physical models in nuclear and elementary particle physics, as well as in condensed matter physics. Today, however, due to a practical demand in the area
We show that it is possible to find maximal violations of the CHSH-Bell inequality using only position measurements on a pair of entangled non-relativistic free particles. The device settings required in the CHSH inequality are done by choosing one o
A finite non-classical framework for physical theory is described which challenges the conclusion that the Bell Inequality has been shown to have been violated experimentally, even approximately. This framework postulates the universe as a determinis