ترغب بنشر مسار تعليمي؟ اضغط هنا

Confining D-Instanton Background in an External Electric Field

205   0   0.0 ( 0 )
 نشر من قبل Leila Shahkarami
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Using holography, we discuss the effects of an external static electric field on the D3/D-instanton theory at zero-temperature, which is a quasi-confining theory, with confined quarks and deconfined gluons. We introduce the quarks to the theory by embedding a probe D7-brane in the gravity side, and turn on an appropriate $U(1)$ gauge field on the flavor brane to describe the electric field. Studying the embedding of the D7-brane for different values of the electric field, instanton density and quark masses, we thoroughly explore the possible phases of the system. We find two critical points in our considerations. We show that beside the usual critical electric field present in deconfined theories, there exists another critical field, with smaller value, below which no quark pairs even the ones with zero mass are produced and thus the electric current is zero in this (insulator) phase. At the same point, the chiral symmetry, spontaneously broken due to the gluon condensate, is restored which shows a first order phase transition. Finally, we obtain the full decay rate calculating the imaginary part of the DBI action of the probe brane and find that it becomes nonzero only when the critical value of the electric field is reached.

قيم البحث

اقرأ أيضاً

336 - Si-wen Li 2020
Using the gauge-gravity duality, we study the holographic Schwinger effect by performing the potential analysis on the confining D3- and D4-brane background with D-instantons then evaluate the pair production/decay rate by taking account into a funda mental string and a single flavor brane respectively. The two confining backgrounds with D-instantons are obtained from the black D(-1)-D3 and D0-D4 solution with a double Wick rotation. The total potential and pair production/decay rate in the Schwinger effect are calculated numerically by examining the NG action of a fundamental string and the DBI action of a single flavor brane all in the presence of an electric field. In both backgrounds our numerical calculation agrees with the critical electric field evaluated from the DBI action and shows the potential barrier is increased by the presence of the D-instantons, thus the production/decay rate is suppressed by the D-instantons. Our interpretation is that particles in the dual field theory could acquire an effective mass through the Chern-Simons interaction or the theta term due to the presence of D-instantons so that the pair production/decay rate in Schwinger effect is suppressed since it behaves as $e^{-m^{2}}$. Our conclusion is in agreement with the previous results obtained in the deconfined D(-1)-D3 background at zero temperature limit and from the approach of the flavor brane in the D0-D4 background. In this sense, this work may be also remarkable to study the phase transition in Maxwell-Chern-Simons theory and observable effects by the theta angle in QCD.
The Schwinger effect in the presence of instantons is considered in this paper. Using AdS/CFT correspondence in the near horizon limit of the D3+D($-1$)-brane background, we calculate the total potential of a quark-antiquark pair in an external elect ric field. It is shown that instantons tend to suppress the pair creation effect and increase the critical electric field above which the pairs are produced freely without any suppression. Interestingly, no other critical electric field, common for all confining field theories, is observed here at finite temperature. However, as expected we find such a critical electric field at zero temperature. The pair production rate evaluated by the calculation of the expectation value of the circular Wilson loop also confirms this result.
We study the response of confining gauge theory to the external electric field by using holographic Yang-Mills theories in the large $N_c$ limit. Although the theories are in the confinement phase, we find a transition from the insulator to the condu ctor phase when the electric field exceeds its critical value. Then, the baryon number current is generated in the conductor phase. At the same time, in this phase, the meson melting is observed through the quasi-normal modes of meson spectrum. Possible ideas are given for the string state corresponding to the melted mesons, and they lead to the idea that the source of this current may be identified with the quarks and anti-quarks supplied by the melted mesons. We also discuss about other possible carriers. Furthermore, from the analysis of the massless quark, chiral symmetry restoration is observed at the insulator-conductor transition point by studying a confining theory in which the chiral symmetry is broken.
192 - M. Ali-Akbari , F. Charmchi 2016
The holographic equilibration of a far-from-equilibrium strongly coupled gauge theory is investigated. The dynamics of a probe D7-brane in an AdS-Vaidya background is studied in the presence of an external time-dependent electric field. Defining the equilibration times $t_{eq}^c$ and $t_{eq}^j$, at which condensation and current relax to their final equilibrated values, receptively, the smallness of transition time $k_M$ or $k_E$ is enough to observe a universal behaviour for re-scaled equilibration times $k_M k_E (t_{eq}^c)^{-2}$ and $k_M k_E (t_{eq}^j)^{-2}$. Moreover, regardless of the values for $k_M$ and $k_E$, $t_{eq}^c/t_{eq}^j$ also behaves universally for large enough value of the ratio of the final electric field to final temperature. Then a simple discussion of the static case reveals that $t_{eq}^c leq t_{eq}^j$. For an out-of-equilibrium process, our numerical results show that, apart from the cases for which $k_E$ is small, the static time ordering persists.
70 - C. N. Leung 1998
The effects of an external field on the dynamics of chiral symmetry breaking are studied using quenched, ladder QED as our model gauge field theory. It is found that a uniform external magnetic field enables the chiral symmetry to be spontaneously br oken at weak gauge couplings, in contrast with the situation when no external field is present. The broken chiral symmetry is restored at high temperatures as well as at high chemical potentials. The nature of the two chiral phase transitions is different: the transition at high temperatures is a continuous one whereas the phase transition at high chemical potentials is discontinuous.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا