ﻻ يوجد ملخص باللغة العربية
Under the Kolmogorov--Smirnov metric, an upper bound on the rate of convergence to the Gaussian distribution is obtained for linear statistics of the matrix ensembles in the case of the Gaussian, Laguerre, and Jacobi weights. The main lemma gives an estimate for the characteristic functions of the linear statistics; this estimate is uniform over the growing interval. The proof of the lemma relies on the Riemann--Hilbert approach.
We consider a class of interacting particle systems with values in $[0,8)^{zd}$, of which the binary contact path process is an example. For $d ge 3$ and under a certain square integrability condition on the total number of the particles, we prove a
We prove for the rescaled convolution map $fto fcircledast f$ propagation of polynomial, exponential and gaussian localization. The gaussian localization is then used to prove an optimal bound on the rate of entropy production by this map. As an appl
We consider branching random walks in $d$-dimensional integer lattice with time-space i.i.d. offspring distributions. When $d ge 3$ and the fluctuation of the environment is well moderated by the random walk, we prove a central limit theorem for the
We define a multi-group version of the mean-field spin model, also called Curie-Weiss model. It is known that, in the high temperature regime of this model, a central limit theorem holds for the vector of suitably scaled group magnetisations, that is
In this article we generalize the classical Edgeworth expansion for the probability density function (PDF) of sums of a finite number of symmetric independent identically distributed random variables with a finite variance to sums of variables with a