ترغب بنشر مسار تعليمي؟ اضغط هنا

On Hopf hypersurfaces of the homogeneous nearly Kahler $mathbf{S}^3timesmathbf{S}^3$

71   0   0.0 ( 0 )
 نشر من قبل Zejun Hu
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, extending our previous joint work (Hu et al., Math Nachr 291:343--373, 2018), we initiate the study of Hopf hypersurfaces in the homogeneous NK (nearly Kahler) manifold $mathbf{S}^3timesmathbf{S}^3$. First, we show that any Hopf hypersurface of the homogeneous NK $mathbf{S}^3timesmathbf{S}^3$ does not admit two distinct principal curvatures. Then, for the important class of Hopf hypersurfaces with three distinct principal curvatures, we establish a complete classification under the additional condition that their holomorphic distributions ${U}^perp$ are preserved by the almost product structure $P$ of the homogeneous NK $mathbf{S}^3timesmathbf{S}^3$.



قيم البحث

اقرأ أيضاً

145 - Zejun Hu , Zeke Yao , Xi Zhang 2019
Each hypersurface of a nearly Kahler manifold is naturally equipped with two tensor fields of $(1,1)$-type, namely the shape operator $A$ and the induced almost contact structure $phi$. In this paper, we show that, in the homogeneous NK $mathbb{S}^6$ a hypersurface satisfies the condition $Aphi+phi A=0$ if and only if it is totally geodesic; moreover, similar as for the non-flat complex space forms, the homogeneous nearly Kahler manifold $mathbb{S}^3timesmathbb{S}^3$ does not admit a hypersurface that satisfies the condition $Aphi+phi A=0$.
54 - G. Deschamps , E. Loubeau 2019
In this article, we show that a hypersurface of the nearly Kahler $CP^3$ or $F_{1,2}$ cannot have its shape operator and induced almost contact structure commute together. This settles the question for six-dimensional homogeneous nearly Kahler mani folds, as the cases of $S^6$ and $S^3 times S^3$ were previously solved, and provides a counterpart to the more classical question for the complex space forms $CP^n$ and $CH^n$. The proof relies heavily on the construction of $CP^3$ and $F_{1,2}$ as twistor spaces of $S^4$ and $CP^2$
We prove that a 2n-dimensional compact homogeneous nearly Kahler manifold with strictly positive sectional curvature is isometric to CP^{n}, equipped with the symmetric Fubini-Study metric or with the standard Sp(m)-homogeneous metric, n =2m-1, or to S^{6} as Riemannian manifold with constant sectional curvature. This is a positive answer for a revised version of a conjecture given by Gray.
214 - Andrei Moroianu 2009
The moduli space NK of infinitesimal deformations of a nearly Kahler structure on a compact 6-dimensional manifold is described by a certain eigenspace of the Laplace operator acting on co-closed primitive (1,1) forms. Using the Hermitian Laplace ope rator and some representation theory, we compute the space NK on all 6-dimensional homogeneous nearly Kahler manifolds. It turns out that the nearly Kahler structure is rigid except for the flag manifold F(1,2)=SU_3/T^2, which carries an 8-dimensional moduli space of infinitesimal nearly Kahler deformations, modeled on the Lie algebra su_3 of the isometry group.
We find a class of minimal hypersurfaces H(k) as the zero level set of Pfaffians, resp. determinants of real 2k+2 dimensional antisymmetric matrices. While H(1) and H(2) are congruent to a 6-dimensional quadratic cone resp. Hsiangs cubic su(4) invari ant in R15, H(k>2) (special harmonic so(2k+2)-invariant cones of degree>3) seem to be new.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا