ﻻ يوجد ملخص باللغة العربية
We describe a scheme to coherently convert a microwave photon of a superconducting co-planar waveguide resonator to an optical photon emitted into a well-defined temporal and spatial mode. The conversion is realized by a cold atomic ensemble trapped above the surface of the superconducting atom chip, near the antinode of the microwave cavity. The microwave photon couples to a strong Rydberg transition of the atoms that are also driven by a pair of laser fields with appropriate frequencies and wavevectors for an efficient wave-mixing process. With only few thousand atoms in an ensemble of moderate density, the microwave photon can be completely converted into an optical photon emitted with high probability into the phase matched direction and, e.g., fed into a fiber waveguide. This scheme operates in a free-space configuration, without requiring strong coupling of the atoms to a resonant optical cavity.
We demonstrate microwave-to-optical conversion using six-wave mixing in $^{87}$Rb atoms where the microwave field couples to two atomic Rydberg states, and propagates collinearly with the converted optical field. We achieve a photon conversion effici
We analyze the design of a potential replacement technology for the commercial ferrite circulators that are ubiquitous in contemporary quantum superconducting microwave experiments. The lossless, lumped element design is capable of being integrated o
We present a design for a superconducting, on-chip circulator composed of dynamically modulated transfer switches and delays. Design goals are set for the multiplexed readout of superconducting qubits. Simulations of the device show that it allows fo
Quantum networks are likely to have a profound impact on the way we compute and communicate in the future. In order to wire together superconducting quantum processors over kilometer-scale distances, we need transducers that can generate entanglement
We report on the design and performance of an on-chip microwave circulator with a widely (GHz) tunable operation frequency. Non-reciprocity is created with a combination of frequency conversion and delay, and requires neither permanent magnets nor mi