ﻻ يوجد ملخص باللغة العربية
Debris disks are exoplanetary systems containing planets, minor bodies (such as asteroids and comets) and debris dust. Unseen planets are presumed to perturb the minor bodies into crossing orbits, generating small dust grains that are detected via remote sensing. Debris disks have been discovered around main sequence stars of a variety of ages (from 10 Myr to several Gyr) and stellar spectral types (from early A-type to M-type stars). As a result, they serve as excellent laboratories for understanding whether the architecture and the evolution of our Solar System is common or rare. This white paper addresses two outstanding questions in debris disk science: (1) Are debris disk minor bodies similar to asteroids and comets in our Solar System? (2) Do planets separate circumstellar material into distinct reservoirs and/or mix material during planet migration? We anticipate that SOFIA/HIRMES, JWST, and WFIRST/CGI will greatly improve our understanding of debris disk composition, enabling the astronomical community to answer these questions. However, we note that despite their observational power, these facilities will not provide large numbers of detections or detailed characterization of cold ices and silicates in the Trans Neptunian zone. Origins Space Telescope is needed to revolutionize our understanding of the bulk composition and mixing in exoplanetary systems.
We present the results of our recent study on the interactions between a giant planet and a self-gravitating gas disk. We investigate how the disks self-gravity affects the gap formation process and the migration of the giant planet. Two series of 1-
We present models for the formation of terrestrial planets, and the collisional evolution of debris disks, in planetary systems that contain multiple unstable gas giants. We previously showed that the dynamics of the giant planets introduces a correl
Thousands of exoplanets have been found with many widely different from the ones in our own system. Despite the success, systems with planets in wide orbits analogous to those of Jupiter and Saturn, in the critical first several hundred million years
Circumstantial evidence suggests that most known extra-solar planetary systems are survivors of violent dynamical instabilities. Here we explore how giant planet instabilities affect the formation and survival of terrestrial planets. We simulate plan
Debris disks are tenuous, dust-dominated disks commonly observed around stars over a wide range of ages. Those around main sequence stars are analogous to the Solar Systems Kuiper Belt and Zodiacal light. The dust in debris disks is believed to be co