ترغب بنشر مسار تعليمي؟ اضغط هنا

A Theoretically Sound Upper Bound on the Triplet Loss for Improving the Efficiency of Deep Distance Metric Learning

61   0   0.0 ( 0 )
 نشر من قبل Tuan N.A. Hoang
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a method that substantially improves the efficiency of deep distance metric learning based on the optimization of the triplet loss function. One epoch of such training process based on a naive optimization of the triplet loss function has a run-time complexity O(N^3), where N is the number of training samples. Such optimization scales poorly, and the most common approach proposed to address this high complexity issue is based on sub-sampling the set of triplets needed for the training process. Another approach explored in the field relies on an ad-hoc linearization (in terms of N) of the triplet loss that introduces class centroids, which must be optimized using the whole training set for each mini-batch - this means that a naive implementation of this approach has run-time complexity O(N^2). This complexity issue is usually mitigated with poor, but computationally cheap, approximate centroid optimization methods. In this paper, we first propose a solid theory on the linearization of the triplet loss with the use of class centroids, where the main conclusion is that our new linear loss represents a tight upper-bound to the triplet loss. Furthermore, based on the theory above, we propose a training algorithm that no longer requires the centroid optimization step, which means that our approach is the first in the field with a guaranteed linear run-time complexity. We show that the training of deep distance metric learning methods using the proposed upper-bound is substantially faster than triplet-based methods, while producing competitive retrieval accuracy results on benchmark datasets (CUB-200-2011 and CAR196).



قيم البحث

اقرأ أيضاً

We present a novel hierarchical triplet loss (HTL) capable of automatically collecting informative training samples (triplets) via a defined hierarchical tree that encodes global context information. This allows us to cope with the main limitation of random sampling in training a conventional triplet loss, which is a central issue for deep metric learning. Our main contributions are two-fold. (i) we construct a hierarchical class-level tree where neighboring classes are merged recursively. The hierarchical structure naturally captures the intrinsic data distribution over the whole database. (ii) we formulate the problem of triplet collection by introducing a new violate margin, which is computed dynamically based on the designed hierarchical tree. This allows it to automatically select meaningful hard samples with the guide of global context. It encourages the model to learn more discriminative features from visual similar classes, leading to faster convergence and better performance. Our method is evaluated on the tasks of image retrieval and face recognition, where it outperforms the standard triplet loss substantially by 1%-18%. It achieves new state-of-the-art performance on a number of benchmarks, with much fewer learning iterations.
247 - Xiaonan Zhao , Huan Qi , Rui Luo 2019
We address the problem of distance metric learning in visual similarity search, defined as learning an image embedding model which projects images into Euclidean space where semantically and visually similar images are closer and dissimilar images ar e further from one another. We present a weakly supervised adaptive triplet loss (ATL) capable of capturing fine-grained semantic similarity that encourages the learned image embedding models to generalize well on cross-domain data. The method uses weakly labeled product description data to implicitly determine fine grained semantic classes, avoiding the need to annotate large amounts of training data. We evaluate on the Amazon fashion retrieval benchmark and DeepFashion in-shop retrieval data. The method boosts the performance of triplet loss baseline by 10.6% on cross-domain data and out-performs the state-of-art model on all evaluation metrics.
75 - Qi Qian , Lei Shang , Baigui Sun 2019
Distance metric learning (DML) is to learn the embeddings where examples from the same class are closer than examples from different classes. It can be cast as an optimization problem with triplet constraints. Due to the vast number of triplet constr aints, a sampling strategy is essential for DML. With the tremendous success of deep learning in classifications, it has been applied for DML. When learning embeddings with deep neural networks (DNNs), only a mini-batch of data is available at each iteration. The set of triplet constraints has to be sampled within the mini-batch. Since a mini-batch cannot capture the neighbors in the original set well, it makes the learned embeddings sub-optimal. On the contrary, optimizing SoftMax loss, which is a classification loss, with DNN shows a superior performance in certain DML tasks. It inspires us to investigate the formulation of SoftMax. Our analysis shows that SoftMax loss is equivalent to a smoothed triplet loss where each class has a single center. In real-world data, one class can contain several local clusters rather than a single one, e.g., birds of different poses. Therefore, we propose the SoftTriple loss to extend the SoftMax loss with multiple centers for each class. Compared with conventional deep metric learning algorithms, optimizing SoftTriple loss can learn the embeddings without the sampling phase by mildly increasing the size of the last fully connected layer. Experiments on the benchmark fine-grained data sets demonstrate the effectiveness of the proposed loss function. Code is available at https://github.com/idstcv/SoftTriple
Deep metric learning, which learns discriminative features to process image clustering and retrieval tasks, has attracted extensive attention in recent years. A number of deep metric learning methods, which ensure that similar examples are mapped clo se to each other and dissimilar examples are mapped farther apart, have been proposed to construct effective structures for loss functions and have shown promising results. In this paper, different from the approaches on learning the loss structures, we propose a robust SNR distance metric based on Signal-to-Noise Ratio (SNR) for measuring the similarity of image pairs for deep metric learning. By exploring the properties of our SNR distance metric from the view of geometry space and statistical theory, we analyze the properties of our metric and show that it can preserve the semantic similarity between image pairs, which well justify its suitability for deep metric learning. Compared with Euclidean distance metric, our SNR distance metric can further jointly reduce the intra-class distances and enlarge the inter-class distances for learned features. Leveraging our SNR distance metric, we propose Deep SNR-based Metric Learning (DSML) to generate discriminative feature embeddings. By extensive experiments on three widely adopted benchmarks, including CARS196, CUB200-2011 and CIFAR10, our DSML has shown its superiority over other state-of-the-art methods. Additionally, we extend our SNR distance metric to deep hashing learning, and conduct experiments on two benchmarks, including CIFAR10 and NUS-WIDE, to demonstrate the effectiveness and generality of our SNR distance metric.
259 - Zhengwen Li , Xiabi Liu 2021
Deep Metric Learning (DML) is helpful in computer vision tasks. In this paper, we firstly introduce DML into image co-segmentation. We propose a novel Triplet loss for Image Segmentation, called IS-Triplet loss for short, and combine it with traditio nal image segmentation loss. Different from the general DML task which learns the metric between pictures, we treat each pixel as a sample, and use their embedded features in high-dimensional space to form triples, then we tend to force the distance between pixels of different categories greater than of the same category by optimizing IS-Triplet loss so that the pixels from different categories are easier to be distinguished in the high-dimensional feature space. We further present an efficient triple sampling strategy to make a feasible computation of IS-Triplet loss. Finally, the IS-Triplet loss is combined with 3 traditional image segmentation losses to perform image segmentation. We apply the proposed approach to image co-segmentation and test it on the SBCoseg dataset and the Internet dataset. The experimental result shows that our approach can effectively improve the discrimination of pixels categories in high-dimensional space and thus help traditional loss achieve better performance of image segmentation with fewer training epochs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا