ﻻ يوجد ملخص باللغة العربية
Implementing topological insulators as elementary units in quantum technologies requires a comprehensive understanding of the dephasing mechanisms governing the surface carriers in these materials, which impose a practical limit to the applicability of these materials in such technologies requiring phase coherent transport. To investigate this, we have performed magneto-resistance (MR) and conductance fluctuations (CF) measurements in both exfoliated and molecular beam epitaxy grown samples. The phase breaking length ($l_{phi}$) obtained from MR shows a saturation below sample dependent characteristic temperatures, consistent with that obtained from CF measurements. We have systematically eliminated several factors that may lead to such behavior of $l_{phi}$ in the context of TIs, such as finite size effect, thermalization, spin-orbit coupling length, spin-flip scattering, and surface-bulk coupling. Our work indicates the need to identify an alternative source of dephasing that dominates at low $T$ in topological insulators, causing saturation in the phase breaking length and time.
Magnetotransport constitutes a useful probe to understand the interplay between electronic band topology and magnetism in spintronics devices based on topological materials. A recent theory of Lu and Shen [Phys. Rev. Lett. 112, 146601 (2014)] on magn
Topological insulators are new states of quantum matter with surface states protected by the time-reversal symmetry. In this work, we perform first-principle electronic structure calculations for $Sb_2Te_3$, $Sb_2Se_3$, $Bi_2Te_3$ and $Bi_2Se_3$ crys
Inorganic halide perovskites have emerged as a promising platform in a wide range of applications from solar energy harvesting to computing, and light emission. The recent advent of epitaxial thin film growth of halide perovskites has made it possibl
The traditional concept of phase transitions has, in recent years, been widened in a number of interesting ways. The concept of a topological phase transition separating phases with a different ground state topology, rather than phases of different s
The two-dimensional layered compound PdCoO$_2$ is one of the best oxide conductors, providing an intriguing research arena opened by the long mean free path and the very high mobility of ~51000 cm2/Vs. These properties turn PdCoO$_2$ into a candidate