ترغب بنشر مسار تعليمي؟ اضغط هنا

Low temperature saturation of phase coherence length in topological insulators

429   0   0.0 ( 0 )
 نشر من قبل Saurav Islam Mr
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Implementing topological insulators as elementary units in quantum technologies requires a comprehensive understanding of the dephasing mechanisms governing the surface carriers in these materials, which impose a practical limit to the applicability of these materials in such technologies requiring phase coherent transport. To investigate this, we have performed magneto-resistance (MR) and conductance fluctuations (CF) measurements in both exfoliated and molecular beam epitaxy grown samples. The phase breaking length ($l_{phi}$) obtained from MR shows a saturation below sample dependent characteristic temperatures, consistent with that obtained from CF measurements. We have systematically eliminated several factors that may lead to such behavior of $l_{phi}$ in the context of TIs, such as finite size effect, thermalization, spin-orbit coupling length, spin-flip scattering, and surface-bulk coupling. Our work indicates the need to identify an alternative source of dephasing that dominates at low $T$ in topological insulators, causing saturation in the phase breaking length and time.

قيم البحث

اقرأ أيضاً

Magnetotransport constitutes a useful probe to understand the interplay between electronic band topology and magnetism in spintronics devices based on topological materials. A recent theory of Lu and Shen [Phys. Rev. Lett. 112, 146601 (2014)] on magn etically doped topological insulators predicts that quantum corrections $Deltakappa$ to the temperature-dependence of the conductivity can change sign during the Curie transition. This phenomenon has been attributed to a suppression of the Berry phase of the topological surface states at the Fermi level, caused by a magnetic energy gap. Here, we demonstrate experimentally that $Deltakappa$ can reverse its sign even when the Berry phase at the Fermi level remains unchanged, provided that the inelastic scattering length decreases with temperature below the Curie transition.
Topological insulators are new states of quantum matter with surface states protected by the time-reversal symmetry. In this work, we perform first-principle electronic structure calculations for $Sb_2Te_3$, $Sb_2Se_3$, $Bi_2Te_3$ and $Bi_2Se_3$ crys tals. Our calculations predict that $Sb_2Te_3$, $Bi_2Te_3$ and $Bi_2Se_3$ are topological insulators, while $Sb_2Se_3$ is not. In particular, $Bi_2Se_3$ has a topologically non-trivial energy gap of $0.3 eV$, suitable for room temperature applications. We present a simple and unified continuum model which captures the salient topological features of this class of materials. These topological insulators have robust surface states consisting of a single Dirac cone at the $Gamma$ point.
387 - K. Nasyedkin , I. King , L. Zhang 2020
Inorganic halide perovskites have emerged as a promising platform in a wide range of applications from solar energy harvesting to computing, and light emission. The recent advent of epitaxial thin film growth of halide perovskites has made it possibl e to investigate low-dimensional quantum electronic devices based on this class of materials. This study leverages advances in vapor-phase epitaxy of halide perovskites to perform low-temperature magnetotransport measurements on single-domain cesium tin iodide (CsSnI$_3$) epitaxial thin films. The low-field magnetoresistance carries signatures of coherent quantum interference effects and spin-orbit coupling. These weak anti-localization measurements reveal a micron-scale low-temperature phase coherence length for charge carriers in this system. The results indicate that epitaxial halide perovskite heterostructures are a promising platform for investigating long coherent quantum electronic effects and potential applications in spintronics and spin-orbitronics.
70 - N. Sedlmayr 2019
The traditional concept of phase transitions has, in recent years, been widened in a number of interesting ways. The concept of a topological phase transition separating phases with a different ground state topology, rather than phases of different s ymmetries, has become a large widely studied field in its own right. Additionally an analogy between phase transitions, described by non-analyticities in the derivatives of the free energy, and non-analyticities which occur in dynamically evolving correlation functions has been drawn. These are called dynamical phase transitions and one is often now far from the equilibrium situation. In these short lecture notes we will give a brief overview of the history of these concepts, focusing in particular on the way in which dynamical phase transitions themselves can be used to shed light on topological phase transitions and topological phases. We will go on to focus, first, on the effect which the topologically protected edge states, which are one of the interesting consequences of topological phases, have on dynamical phase transitions. Second we will consider what happens in the experimentally relevant situations where the system begins either in a thermal state rather than the ground state, or exchanges particles with an external environment.
76 - T. Harada , P. Bredol , H. Inoue 2020
The two-dimensional layered compound PdCoO$_2$ is one of the best oxide conductors, providing an intriguing research arena opened by the long mean free path and the very high mobility of ~51000 cm2/Vs. These properties turn PdCoO$_2$ into a candidate material for nanoscale quantum devices. By exploring universal conductance fluctuations originating at nanoscale PdCoO$_2$ Hall-bar devices, we determined the phase coherence length of electron transport in c-axis oriented PdCoO$_2$ thin films to equal ~100 nm. The weak temperature dependence of the measured phase coherence length suggests that defect scattering at twin boundaries in the PdCoO$_2$ thin film governs phase breaking. These results suggest that phase coherent devices can be achieved by realizing the devices smaller than the size of twin domains, via refined microfabrication and suppression of twin boundaries.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا