ﻻ يوجد ملخص باللغة العربية
In the case of favorable pressure gradient, Oleinik proved the global existence of classical solution for the 2-D steady Prandtl equation for a class of positive data. In the case of adverse pressure gradient, an important physical phenomena is the boundary layer separation. In this paper, we prove the boundary layer separation for a large class of Oleiniks data and confirm Goldsteins hypothesis concerning the local behavior of the solution near the separation, which gives a partial answer to open problem 5 proposed by Oleinik and Samokin in cite{Olei}.
As a continuation of cite{LXY}, the paper aims to justify the high Reynolds numbers limit for the MHD system with Prandtl boundary layer expansion when no-slip boundary condition is imposed on velocity field and perfect conducting boundary condition
This paper is concerned with the vanishing viscosity and magnetic resistivity limit for the two-dimensional steady incompressible MHD system on the half plane with no-slip boundary condition on velocity field and perfectly conducting wall condition o
In this paper, we are concerned with the motion of electrically conducting fluid governed by the two-dimensional non-isentropic viscous compressible MHD system on the half plane, with no-slip condition for velocity field, perfect conducting condition
In this article we find the solution of the Burger equation with viscosity applying the boundary layer theory. In addition, we will observe that the solution of Burger equation with viscosity converge to the solution of Burger stationary equation in the norm of $L_{2}([-1,1])$.
We study the flow of an incompressible liquid film down a wavy incline. Applying a Galerkin method with only one ansatz function to the Navier-Stokes equations we derive a second order weighted residual integral boundary layer equation, which in part