ﻻ يوجد ملخص باللغة العربية
We may infer a transition $|n rangle to |m rangle$ between energy eigenstates of an open quantum system by observing the emission of a photon of Bohr frequency $omega_{mn} = (E_n-E_m) / hbar$. In addition to the collapses to the state $|mrangle$, the measurement must also have brought into existence the pre-measurement state $|n rangle$. As quantum trajectories are based on past observations, the condition state will jump to $| m rangle$, but the state $|nrangle$ does not feature in any essential way. We resolve this paradox by looking at quantum smoothing and derive the time-symmetric model for quantum jumps.
We describe the absorption by the walls of a quantum electrodynamics cavity as a process during which the elementary excitations (photons) of an internal mode of the cavity exit by tunneling through the cavity walls. We estimate by classical methods
In an externally driven multilevel quantum system observation that the NEXT jump has not yet happened affects its future development. In previous work [Phys. Rev. A36, 929 (1987)] it was shown that this class of measurement makes it possible to obser
We derive a time-convolutionless master equation for the spin-boson model in the weak coupling limit. The temporarily negative decay rates in the master equation indicate short time memory effects in the dynamics which is explicitly revealed when the
The stabilizing properties of one-error correcting jump codes are explored under realistic non-ideal conditions. For this purpose the quantum algorithm of the tent-map is decomposed into a universal set of Hamiltonian quantum gates which ensure perfe
The recently introduced detected-jump correcting quantum codes are capable of stabilizing qubit-systems against spontaneous decay processes arising from couplings to statistically independent reservoirs. These embedded quantum codes exploit classical