ترغب بنشر مسار تعليمي؟ اضغط هنا

Structure of surface electronic states in strained mercury telluride

103   0   0.0 ( 0 )
 نشر من قبل Oleg Kibis
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the theory describing the various surface electronic states arisen from the mixing of conduction and valence bands in a strained mercury telluride (HgTe) bulk material. We demonstrate that the strain-induced band gap in the Brillouin zone center of HgTe results in the surface states of two different kinds. Surface states of the first kind exist in the small region of electron wave vectors near the center of the Brillouin zone and have the Dirac linear electron dispersion characteristic for topological states. The surface states of the second kind exist only far from the center of the Brillouin zone and have the parabolic dispersion for large wave vectors. The structure of these surface electronic states is studied both analytically and numerically in the broad range of their parameters, aiming to develop its systematic understanding for the relevant model Hamiltonian. The results bring attention to the rich surface physics relevant for topological systems.

قيم البحث

اقرأ أيضاً

We developed the theory which describes the Floquet engineering of surface electronic modes in bulk mercury telluride (HgTe) by a circularly polarized electromagnetic field. The analysis shows that the field results in appearance of the surface state s which arise from the mixing of conduction and valence bands of HgTe. Their branches lie near the center of the Brillouin zone and have the Dirac dispersion characteristic for topological states. Besides them, the irradiation induces the gap between the conduction and valence bands of HgTe. Thus, the irradiation can turn mercury telluride into topological insulator from gapless semiconductor. It is demonstrated that the optically induced states differ substantially from the non-topological surface states existing in HgTe without irradiation. The structure of the found states is studied both analytically and numerically in the broad range of their parameters.
We derive electronic tight-binding Hamiltonians for strained graphene, hexagonal boron nitride and transition metal dichalcogenides based on Wannier transformation of {it ab initio} density functional theory calculations. Our microscopic models inclu de strain effects to leading order that respect the hexagonal crystal symmetry and local crystal configuration, and are beyond the central force approximation which assumes only pair-wise distance dependence. Based on these models, we also derive and analyze the effective low-energy Hamiltonians. Our {it ab initio} approaches complement the symmetry group representation construction for such effective low-energy Hamiltonians and provide the values of the coefficients for each symmetry-allowed term. These models are relevant for the design of electronic device applications, since they provide the framework for describing the coupling of electrons to other degrees of freedom including phonons, spin and the electromagnetic field. The models can also serve as the basis for exploring the physics of many-body systems of interesting quantum phases.
Preceded by the discovery of topological insulators, Dirac and Weyl semimetals have become a pivotal direction of research in contemporary condensed matter physics. While easily accessible from a theoretical viewpoint, these topological semimetals po se a serious challenge in terms of experimental synthesis and analysis to allow for their unambiguous identification. In this work, we report on detailed transport experiments on compressively strained HgTe. Due to the superior sample quality in comparison to other topological semimetallic materials, this enables us to resolve the interplay of topological surface states and semimetallic bulk states to an unprecedented degree of precision and complexity. As our gate design allows us to precisely tune the Fermi level at the Weyl and Dirac points, we identify a magnetotransport regime dominated by Weyl/Dirac bulk state conduction for small carrier densities and by topological surface state conduction for larger carrier densities. As such, similar to topological insulators, HgTe provides the archetypical reference for the experimental investigation of topological semimetals.
81 - S. Souma , K. Eto , M. Nomura 2011
We have performed angle-resolved photoemission spectroscopy on Pb(Bi1-xSbx)2Te4, which is a member of lead-based ternary tellurides and has been theoretically proposed as a candidate for a new class of three-dimensional topological insulators (TIs). In PbBi2Te4, we found a topological surface state with a hexagonally deformed Dirac-cone band dispersion, indicating that this material is a strong TI with a single topological surface state at the Brillouin-zone center. Partial replacement of Bi with Sb causes a marked change in the Dirac carrier concentration, leading to the sign change of Dirac carriers from n-type to p-type. The Pb(Bi1-xSbx)2Te4 system with tunable Dirac carriers thus provides a new platform for investigating exotic topological phenomena.
243 - C. Brune , C.X. Liu , E.G. Novik 2011
We report transport studies on a three dimensional, 70 nm thick HgTe layer, which is strained by epitaxial growth on a CdTe substrate. The strain induces a band gap in the otherwise semi-metallic HgTe, which thus becomes a three dimensional topologic al insulator. Contributions from residual bulk carriers to the transport properties of the gapped HgTe layer are negligible at mK temperatures. As a result, the sample exhibits a quantized Hall effect that results from the 2D single cone Dirac-like topological surface states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا