ﻻ يوجد ملخص باللغة العربية
Despite a long history of use of citation count as a measure to assess the impact or influence of a scientific paper, the evolution of follow-up work inspired by the paper and their interactions through citation links have rarely been explored to quantify how the paper enriches the depth and breadth of a research field. We propose a novel data structure, called Influence Dispersion Tree (IDT) to model the organization of follow-up papers and their dependencies through citations. We also propose the notion of an ideal IDT for every paper and show that an ideal (highly influential) paper should increase the knowledge of a field vertically and horizontally. Upon suitably exploring the structural properties of IDT, we derive a suite of metrics, namely Influence Dispersion Index (IDI), Normalized Influence Divergence (NID) to quantify the influence of a paper. Our theoretical analysis shows that an ideal IDT configuration should have equal depth and breadth (and thus minimize the NID value). We establish the superiority of NID as a better influence measure in two experimental settings. First, on a large real-world bibliographic dataset, we show that NID outperforms raw citation count as an early predictor of the number of new citations a paper will receive within a certain period after publication. Second, we show that NID is superior to the raw citation count at identifying the papers recognized as highly influential through Test of Time Award among all their contemporary papers (published in the same venue). We conclude that in order to quantify the influence of a paper, along with the total citation count, one should also consider how the citing papers are organized among themselves to better understand the influence of a paper on the research field. For reproducibility, the code and datasets used in this study are being made available to the community.
Nowadays, researchers have moved to platforms like Twitter to spread information about their ideas and empirical evidence. Recent studies have shown that social media affects the scientific impact of a paper. However, these studies only utilize the t
Quantifying the impact of a scholarly paper is of great significance, yet the effect of geographical distance of cited papers has not been explored. In this paper, we examine 30,596 papers published in Physical Review C, and identify the relationship
For deploying a deep learning model into production, it needs to be both accurate and compact to meet the latency and memory constraints. This usually results in a network that is deep (to ensure performance) and yet thin (to improve computational ef
There is demand from science funders, industry, and the public that science should become more risk-taking, more out-of-the-box, and more interdisciplinary. Is it possible to tell how interdisciplinary and out-of-the-box scientific papers are, or whi
Science is built upon scholarship consensus that changes over time. This raises the question of how revolutionary theories and assumptions are evaluated and accepted into the norm of science as the setting for the next science. Using two recently pro