ترغب بنشر مسار تعليمي؟ اضغط هنا

Dielectric and Raman Spectroscopy in Hematite crystallites across the Morin Transition

160   0   0.0 ( 0 )
 نشر من قبل Ashna Bajpai
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report complex dielectric and Raman spectroscopy measurements in four samples of $alpha$- Fe$_2$O$_3$, consisting of crystallites which are either hexagonal shaped plates or cuboids. All four samples exhibit the spin reorientation transition from a pure antiferromagnetic (AFM) to a weak-ferromagnetic (WFM) state at the Morin Transition temperature (T$_M$) intrinsic to $alpha$- Fe$_2$O$_3$. These samples, pressed and sintered in identical conditions for the dielectric measurements, reveal moderate but clear enhancement in the real part of the dielectric constant ($epsilon$) in the WFM region. However, a relaxation-like behavior in the imaginary part of $epsilon$ is observed only in nano plates or big cuboids. Further still, this relaxation patten is observed only in lower frequency region, lasting upto a few kHz and follows Arrhenius law within this limited range. The activation energy deduced from the fitting is suggestive of polaronic conduction. Temperature dependent Raman spectra reveal anomalies in all major phononic modes and also in 2Eu mode in the vicinity of the Morin transition. A peak like behavior in Raman Shifts, in conjuncture with anharmonic fitting reveals that the nature of spin phonon coupling is different in pure AFM and WFM regions and it is tied to the mild variations, as observed in the dielectric constant of$alpha$- Fe$_2$O$_3$ near the T$_M$.

قيم البحث

اقرأ أيضاً

We present results on structural and magnetic properties of highly crystalline alpha-Fe2O3 nanoparticles of average size ~200 nm, synthesized from a novel sol-gel method using metal alkoxide precursor. These particles are multi-domain, showing the we ak ferromagnetic-antiferromagnetic (WF-AF) transition (i.e., the Morin transition) at T_M = 256(2) K. Mossbauer measurements revealed a jump in hyperfine parameters at T ~ T_M, which also displays thermal hysteresis upon cooling or heating the sample. The analysis of hyperfine parameters as a function of temperature allowed us to discard temperature gradients as well as the coexistence of WF/AF phases as possible origins of this hysteretic behaviour. Instead, the hysteresis can be qualitatively explained by the small size and high-crystallinity of the particles, which hinder the nucleation of the WF or AF phases yielding metastable states beyond TM.
A wide range of disordered materials, including disordered correlated systems, show Universal Dielectric Response (UDR), followed by a superlinear power-law increase in their optical responses over exceptionally broad frequency regimes. While extensi vely used in various contexts over the years, the microscopics underpinning UDR remains controversial. Here, we investigate the optical response of the simplest model of correlated fermions, Falicov-Kimball model (FKM), across the continuous metal-insulator transition (MIT) and analyze the associated quantum criticality in detail using cluster extension of dynamical mean field theory (CDMFT). Surprisingly, we find that UDR naturally emerges in the quantum critical region associated with the continuous MIT. We tie the emergence of these novel features to a many-body orthogonality catastrophe accompanying the onset of strongly correlated electronic glassy dynamics close to the MIT, providing a microscopic realization of Jonschers time-honored proposal as well as a rationale for similarities in optical responses between correlated electronic matter and canonical glass formers.
The discovery of multiple coexisting magnetic phases in a crystallographically homogeneous compound Ca$_3$Co$_2$O$_6$ has stimulated an ongoing research activity. In recent years the main focus has been on the zero field state properties, where excee dingly long time scales have been established. In this study we report a detailed investigation of static and dynamic properties of Ca$_3$Co$_2$O$_6$ across the magnetic field induced transition around 3.5 T. This region has so far been practically neglected while we argue that in some aspects it represents a simpler version of the transition across the $B = 0$ state. Investigating the frequency dependence of the ac susceptibility we reveal that on the high field side ($B > 3.5$ T) the response corresponds to a relatively narrow distribution of magnetic clusters. The distribution appears very weakly dependent on magnetic field, with an associated energy barrier of around 200 K. Below 3.5 T a second contribution arises, with much smaller characteristic frequencies and a strong temperature and magnetic field dependence. We discuss these findings in the context of intra-chain and inter-chain clustering of magnetic moments.
280 - Y. S. Lee , T. W. Noh , J. H. Park 2002
We investigated the temperature-dependence of the Raman spectra of a nine-layer BaRuO$_3$ single crystal and a four-layer BaRuO$_3$ epitaxial film, which show pseudogap formations in their metallic states. From the polarized and depolarized spectra, the observed phonon modes are assigned properly according to the predictions of group theory analysis. In both compounds, with decreasing temperature, while $A_{1g}$ modes show a strong hardening, $E_g$ (or $E_{2g}$) modes experience a softening or no significant shift. Their different temperature-dependent behaviors could be related to a direct Ru metal-bonding through the face-sharing of RuO$_6$. It is also observed that another $E_{2g}$ mode of the oxygen participating in the face-sharing becomes split at low temperatures in the four layer BaRuO$_3 $. And, the temperature-dependence of the Raman continua between 250 $sim $ 600 cm$^{-1}$ is strongly correlated to the square of the plasma frequency. Our observations imply that there should be a structural instability in the face-shared structure, which could be closely related to the pseudogap formation of BaRuO$_3$ systems.
Aging effects in the relaxations of conductivity of a two-dimensional electron system in Si have been studied as a function of carrier density. They reveal an abrupt change in the nature of the glassy phase at the metal-insulator transition (MIT): (a ) while full aging is observed in the insulating regime, there are significant departures from full aging on the metallic side of the MIT, before the glassy phase disappears completely at a higher density $n_g$; (b) the amplitude of the relaxations peaks just below the MIT, and it is strongly suppressed in the insulating phase. Other aspects of aging, including large non-Gaussian noise and similarities to spin glasses, also have been discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا