ترغب بنشر مسار تعليمي؟ اضغط هنا

A gyrokinetic model for the plasma periphery of tokamak devices

92   0   0.0 ( 0 )
 نشر من قبل Baptiste Jimmy Frei B. J. Frei
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A gyrokinetic model is presented that can properly describe strong flows, large and small amplitude electromagnetic fluctuations occurring on scale lengths ranging from the electron Larmor radius to the equilibrium perpendicular pressure gradient scale length, and large deviations from thermal equilibrium. The formulation of the gyrokinetic model is based on a second order description of the single charged particle dynamics, derived from Lie perturbation theory, where the fast particle gyromotion is decoupled from the slow drifts, assuming that the ratio of the ion sound Larmor radius to the perpendicular equilibrium pressure scale length is small. The collective behavior of the plasma is obtained by a gyrokinetic Boltzmann equation that describes the evolution of the gyroaveraged distribution function and includes a non-linear gyrokinetic Dougherty collision operator. The gyrokinetic model is then developed into a set of coupled fluid equations referred to as the gyrokinetic moment hierarchy. To obtain this hierarchy, the gyroaveraged distribution function is expanded onto a velocity-space Hermite-Laguerre polynomial basis and the gyrokinetic equation is projected onto the same basis, obtaining the spatial and temporal evolution of the Hermite-Laguerre expansion coefficients. The Hermite-Laguerre projection is performed accurately at arbitrary perpendicular wavenumber values. Finally, the self-consistent evolution of the electromagnetic fields is described by a set of gyrokinetic Maxwells equations derived from a variational principle, with the velocity integrals of the gyroaveraged distribution function explicitly evaluated.

قيم البحث

اقرأ أيضاً

192 - C.S. Chang , S. Ku , G.R. Tynan 2017
Transport barrier formation and its relation to sheared flows in fluids and plasmas are of fundamental interest in various natural and laboratory observations and of critical importance in achieving an economical energy production in a magnetic fusio n device. Here we report the first observation of an edge transport barrier formation event in a gyrokinetic simulation carried out in a realistic tokamak edge geometry. The results show that turbulent Reynolds stress driven sheared ExB flows act in concert with neoclassical orbit loss to quench turbulent transport and form a transport barrier just inside the last closed magnetic flux surface.
Boundary plasma physics plays an important role in tokamak confinement, but is difficult to simulate in a gyrokinetic code due to the scale-inseparable nonlocal multi-physics in magnetic separatrix and open magnetic field geometry. Neutral particles are also an important part of the boundary plasma physics. In the present paper, noble electrostatic gyrokinetic techniques to simulate the flux-driven, low-beta electrostatic boundary plasma is reported. Gyrokinetic ions and drift-kinetic electrons are utilized without scale-separation between the neoclassical and turbulence dynamics. It is found that the nonlinear intermittent turbulence is a natural gyrokinetic phenomenon in the boundary plasma in the vicinity of the magnetic separatrix surface and in the scrape-off layer.
Global electromagnetic gyrokinetic simulations show the existence of near threshold conditions for both a high-$n$ kinetic ballooning mode (KBM) and an intermediate-$n$ kinetic version of peeling-ballooning mode (KPBM) in the edge pedestal of two DII I-D H-mode discharges. When the magnetic shear is reduced in a narrow region of steep pressure gradient, the KPBM is significantly stabilized, while the KBM is weakly destabilized and hence becomes the most-unstable mode. Collisions decrease the KBMs critical $beta$ and increase the growth rate.
Geodesic acoustic modes (GAMs) are studied by means of the gyrokinetic global particle-in-cell code ORB5. Linear electromagnetic simulations in the low electron beta limit have been performed, in order to separate acoustic and Alfvenic time scales an d obtain more accurate measurements. The dependence of the frequency and damping rate on several parameters such as the safety factor, the GAM radial wavenumber and the plasma elongation is studied. All simulations have been performed with kinetic electrons with realistic electron/ion mass ratio. Interpolating formulae for the GAM frequency and damping rate, based on the results of the gyrokinetic simulations, have been derived. Using these expressions, the influence of the temperature gradient on the damping rate is also investigated. Finally, the results are applied to the study of a real discharge of the ASDEX Upgrade tokamak.
289 - A. B. Navarro , B. Teaca , D. Told 2016
We analyze plasma heating in weakly collisional kinetic Alfven wave (KAW) turbulence using high resolution gyrokinetic simulations spanning the range of scales between the ion and the electron gyroradii. Real space structures that have a higher than average heating rate are shown not to be confined to current sheets. This novel result is at odds with previous studies, which use the electromagnetic work in the local electron fluid frame, i.e. $mathbf{J} !cdot! (mathbf{E} + mathbf{v}_etimesmathbf{B})$, as a proxy for turbulent dissipation to argue that heating follows the intermittent spatial structure of the electric current. Furthermore, we show that electrons are dominated by parallel heating while the ions prefer the perpendicular heating route. We comment on the implications of the results presented here.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا