ﻻ يوجد ملخص باللغة العربية
The properties of carbon stars in the Magellanic Clouds (MCs) and their total dust production rates are predicted by fitting their spectral energy distributions (SED) over pre-computed grids of spectra reprocessed by dust. The grids are calculated as a function of the stellar parameters by consistently following the growth for several dust species in their circumstellar envelopes, coupled with a stationary wind. Dust radiative transfer is computed taking as input the results of the dust growth calculations. The optical constants for amorphous carbon are selected in order to reproduce different observations in the infrared and optical bands of textit{Gaia} Data Release 2. We find a tail of extreme mass-losing carbon stars in the Large Magellanic Cloud (LMC) with low gas-to-dust ratios that is not present in the Small Magellanic Cloud (SMC). Typical gas-to-dust ratios are around $700$ for the extreme stars, but they can be down to $sim160$--$200$ and $sim100$ for a few sources in the SMC and in the LMC, respectively. The total dust production rate for the carbon star population is $sim 1.77pm 0.45times10^{-5}$~M$_odot$~yr$^{-1}$, for the LMC, and $sim 2.52pm 0.96 times 10^{-6}$~M$_odot$~yr$^{-1}$, for the SMC. The extreme carbon stars observed with the Atacama Large Millimeter Array and their wind speed are studied in detail. For the most dust-obscured star in this sample the estimated mass-loss rate is $sim 6.3 times 10^{-5}$~M$_odot$~yr$^{-1}$. The grids of spectra are available at: https://ambrananni085.wixsite.com/ambrananni/online-data-1 and included in the SED-fitting python package for fitting evolved stars https://github.com/s-goldman/Dusty-Evolved-Star-Kit .
[Abridged] The stellar Initial Mass Function (IMF) suggests that sub-solar stars form in very large numbers. Most attractive places for catching low-mass star formation in the act are young stellar clusters and associations, still (half-)embedded in
We employ newly computed grids of spectra reprocessed by dust for estimating the total dust production rate (DPR) of carbon stars in the Small Magellanic Cloud (SMC). For the first time, the grids of spectra are computed as a function of the main ste
We present the results of our survey of 1612 MHz circumstellar OH maser emission from asymptotic giant branch (AGB) stars and red supergiants (RSGs) in the Large Magellanic Cloud. We have discovered four new circumstellar maser sources in the LMC, an
New infrared spectra of 33 Galactic carbon stars from FORCAST on SOFIA reveal strong connections between stellar pulsations and the dust and molecular chemistry in their circumstellar shells. A sharp boundary in overall dust content, which predominan
We compare theoretical dust yields for stars with mass 1 Msun < mstar < 8 Msun, and metallicities 0.001 < Z < 0.008 with observed dust production rates (DPR) by carbon- rich and oxygen-rich Asymptotic Giant Branch (C-AGB and O-AGB) stars in the Large