ﻻ يوجد ملخص باللغة العربية
We define involution algebroids which generalise Lie algebroids to the abstract setting of tangent categories. As a part of this generalisation the Jacobi identity which appears in classical Lie theory is replaced by an identity similar to the Yang-Baxter equation. Every classical Lie algebroid has the structure of an involution algebroid and every involution algebroid in a tangent category admits a Lie bracket on the sections of its underlying bundle. As an illustrative application we take the first steps in developing the homotopy theory of involution algebroids.
We study geometric representation theory of Lie algebroids. A new equivalence relation for integrable Lie algebroids is introduced and investigated. It is shown that two equivalent Lie algebroids have equivalent categories of infinitesimal actions of
After recalling the notion of Lie algebroid, we construct these structures associated with contact forms or systems. We are then interested in particular classes of Lie Rinehart algebras.
We propose a definition of a higher version of the omni-Lie algebroid and study its isotropic and involutive subbundles. Our higher omni-Lie algebroid is to (multi)contact and related geometries what the higher generalized tangent bundle of Zambon an
This thesis deals with deformations of VB-algebroids and VB-groupoids. They can be considered as vector bundles in the categories of Lie algebroids and groupoids and encompass several classical objects, including Lie algebra and Lie group representat