ﻻ يوجد ملخص باللغة العربية
This paper considers the transmission of an infinite sequence of messages (a streaming source) over a packet erasure channel, where every source message must be recovered perfectly at the destination subject to a fixed decoding delay. While the capacity of a channel that introduces only bursts of erasures is well known, only recently, the capacity of a channel with either one burst of erasures or multiple arbitrary erasures in any fixed-sized sliding window has been established. However, the codes shown to achieve this capacity are either non-explicit constructions (proven to exist) or explicit constructions that require large field size that scales exponentially with the delay. This work describes an explicit rate-optimal construction for admissible channel and delay parameters over a field size that scales only quadratically with the delay.
Streaming codes are a class of packet-level erasure codes that ensure packet recovery over a sliding window channel which allows either a burst erasure of size $b$ or $a$ random erasures within any window of size $(tau+1)$ time units, under a strict
Achievable rate regions for cooperative relay broadcast channels with rate-limited feedback are proposed. Specifically, we consider two-receiver memoryless broadcast channels where each receiver sends feedback signals to the transmitter through a noi
The Welch Bound is a lower bound on the root mean square cross correlation between $n$ unit-norm vectors $f_1,...,f_n$ in the $m$ dimensional space ($mathbb{R} ^m$ or $mathbb{C} ^m$), for $ngeq m$. Letting $F = [f_1|...|f_n]$ denote the $m$-by-$n$ fr
Non-malleable codes protect against an adversary who can tamper with the coded message by using a tampering function in a specified function family, guaranteeing that the tampering result will only depend on the chosen function and not the coded mess
A partially cooperative relay broadcast channel (RBC) is a three-node network with one source node and two destination nodes (destinations 1 and 2) where destination 1 can act as a relay to assist destination 2. Inner and outer bounds on the capacity