ﻻ يوجد ملخص باللغة العربية
Using the model of hexagonal clusters we express the surface, curvature and Gauss curvature coefficients of the nuclear binding energy in terms of its bulk coefficient. Using the derived values of these coefficients and a single fitting parameter we are able to reasonably well describe the experimental binding energies of nuclei with more than 100 nucleons. To improve the description of lighter nuclei we introduce the same correction for all the coefficients. In this way we determine the apparent values of the surface, curvature and Gauss curvature coefficients which may be used for infinite nuclear matter equation of state. This simple model allows us to fix the temperature dependence of all these coefficients, if the temperature dependence for the bulk term is known. The found estimates for critical temperature are well consistent both with experimental and with theoretical findings.
Within the Time Dependent Hartree Fock (TDHF) approach, we investigate the impact of several ingredients of the nuclear effective interaction, such as incompressibility, symmetry energy, effective mass, derivative of the Lane potential and surface te
The FRS-ESR facility at GSI provides unique conditions for precision measurements of large areas on the nuclear mass surface in a single experiment. Values for masses of 604 neutron-deficient nuclides (30<=Z<=92) were obtained with a typical uncertai
The effect of correlations between the slope and the curvature of the symmetry energy on ground state nuclear observables is studied within the extended Thomas-Fermi approximation. We consider different isovector probes of the symmetry energy, with a
In nuclear reactions of high energy one can simultaneously produce a lot of hypernuclei after the capture of hyperons by nuclear residues. We consider statistical disintegration of such hypernuclear systems and the connection of fragment production w
The sums over (e,e) spectra of 6Li and 7Li nuclei which correspond to the longitudinal sum rule are studied. It is suggested that due to the cluster structure of the lithium isotopes these sums may approximately be expressed in terms of such a sum pe