ﻻ يوجد ملخص باللغة العربية
In this paper, we propose a Sybil attack detection scheme using proofs of work and location. The idea is that each road side unit (RSU) issues a signed time-stamped tag as a proof for the vehicles anonymous location. Proofs sent from multiple consecutive RSUs is used to create vehicle trajectory which is used as vehicle anonymous identity. Also, one RSU is not able to issue trajectories for vehicles, rather the contributions of several RSUs are needed. By this way, attackers need to compromise an infeasible number of RSUs to create fake trajectories. Moreover, upon receiving the proof of location from an RSU, the vehicle should solve a computational puzzle by running proof of work (PoW) algorithm. So, it should provide a valid solution (proof of work) to the next RSU before it can obtain a proof of location. Using the PoW can prevent the vehicles from creating multiple trajectories in case of low-dense RSUs. Then, during any reported event, e.g., road congestion, the event manager uses a matching technique to identify the trajectories sent from Sybil vehicles. The scheme depends on the fact that the Sybil trajectories are bounded physically to one vehicle; therefore, their trajectories should overlap. Extensive experiments and simulations demonstrate that our scheme achieves high detection rate to Sybil attacks with low false negative and acceptable communication and computation overhead.
In federated learning, machine learning and deep learning models are trained globally on distributed devices. The state-of-the-art privacy-preserving technique in the context of federated learning is user-level differential privacy. However, such a m
A novel class of extreme link-flooding DDoS (Distributed Denial of Service) attacks is designed to cut off entire geographical areas such as cities and even countries from the Internet by simultaneously targeting a selected set of network links. The
With the growing amount of cyber threats, the need for development of high-assurance cyber systems is becoming increasingly important. The objective of this paper is to address the challenges of modeling and detecting sophisticated network attacks, s
Fault injections are increasingly used to attack/test secure applications. In this paper, we define formal models of runtime monitors that can detect fault injections that result in test inversion attacks and arbitrary jumps in the control flow. Runt
The rapid growth of Decentralized Finance (DeFi) boosts the Ethereum ecosystem. At the same time, attacks towards DeFi applications (apps) are increasing. However, to the best of our knowledge, existing smart contract vulnerability detection tools ca