ترغب بنشر مسار تعليمي؟ اضغط هنا

Curvilinear coordinate Generalized Source Method for gratings with sharp edges

80   0   0.0 ( 0 )
 نشر من قبل Alexey Shcherbakov A.
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

High-efficient direct numerical methods are currently in demand for optimization procedures in the fields of both conventional diffractive and metasurface optics. With a view of extending the scope of application of the previously proposed Generalized Source Method in the curvilinear coordinates, which has theoretical $Oleft(Nlog Nright)$ asymptotic numerical complexity, a new method formulation is developed for gratings with sharp edges. It is shown that corrugation corners can be treated as effective medium interfaces within the rationale of the method. Moreover, the given formulation is demonstrated to allow for application of the same derivation as one used in classical electrodynamics to derive the interface conditions. This yields continuous combinations of the fields and metric tensor components, which can be directly Fourier factorized. Together with an efficient algorithm the new formulation is demonstrated to substantially increase the computation accuracy for given computer resources.



قيم البحث

اقرأ أيضاً

A high fidelity flow simulation for complex geometries for high Reynolds number ($Re$) flow is still very challenging, which requires more powerful computational capability of HPC system. However, the development of HPC with traditional CPU architect ure suffers bottlenecks due to its high power consumption and technical difficulties. Heterogeneous architecture computation is raised to be a promising solution of difficulties of HPC development. GPU accelerating technology has been utilized in low order scheme CFD solvers on structured grid and high order scheme solvers on unstructured meshes. The high order finite difference methods on structured grid possess many advantages, e.g. high efficiency, robustness and low storage, however, the strong dependence among points for a high order finite difference scheme still limits its application on GPU platform. In present work, we propose a set of hardware-aware technology to optimize the efficiency of data transfer between CPU and GPU, and efficiency of communication between GPUs. An in-house multi-block structured CFD solver with high order finite difference methods on curvilinear coordinates is ported onto GPU platform, and obtain satisfying performance with speedup maximum around 2000x over a single CPU core. This work provides efficient solution to apply GPU computing in CFD simulation with certain high order finite difference methods on current GPU heterogeneous computers. The test shows that significant accelerating effects can been achieved for different GPUs.
The article encloses a new Fourier space method for rigorous optical simulation of 3D periodic dielectric structures. The method relies upon rigorous solution of Maxwells equations in complex composite structures by the Generalized Source Method. Ext remely fast GPU enabled calculations provide a possibility for an efficient search of eigenmodes in 3D periodic complex structures on the basis of rigorously obtained resonant electromagnetic response. The method is applied to the homogenization problem demonstrating a complete anisotropic dielectric tensor retrieval.
We describe the software package FELIX that solves the equations of the time-dependent generator coordinate method (TDGCM) in N-dimensions (N $geq$ 1) under the Gaussian overlap approximation. The numerical resolution is based on the Galerkin finite element discretization of the collective space and the Crank-Nicolson scheme for time integration. The TDGCM solver is implemented entirely in C++. Several additional tools written in C++, Python or bash scripting language are also included for convenience. In this paper, the solver is tested with a series of benchmarks calculations. We also demonstrate the ability of our code to handle a realistic calculation of fission dynamics.
We investigate the applicability of curvilinear grids in the context of astrophysical simulations and WENO schemes. With the non-smooth mapping functions from Calhoun et al. (2008), we can tackle many astrophysical problems which were out of scope wi th the standard grids in numerical astrophysics. We describe the difficulties occurring when implementing curvilinear coordinates into our WENO code, and how we overcome them. We illustrate the theoretical results with numerical data. The WENO finite difference scheme works only for high Mach number flows and smooth mapping functions whereas the finite volume scheme gives accurate results even for low Mach number flows and on non-smooth grids.
We present a numerical method for the solution of linear magnetostatic problems in domains with a symmetry direction, including axial and translational symmetry. The approach uses a Fourier series decomposition of the vector potential formulation alo ng the symmetry direction and covers both, zeroth (non-oscillatory) and non-zero (oscillatory) harmonics. For the latter it is possible to eliminate one component of the vector potential resulting in a fully transverse vector potential orthogonal to the transverse magnetic field. In addition to the Poisson-like equation for the longitudinal component of the non-oscillatory problem, a general curl-curl Helmholtz equation results for the transverse problem covering both, non-oscillatory and oscillatory case. The derivation is performed in the covariant formalism for curvilinear coordinates with a tensorial permeability and symmetry restrictions on metric and permeability tensor. The resulting variational forms are treated by the usual nodal finite element method for the longitudinal problem and by a two-dimensional edge element method for the transverse problem. The numerical solution can be computed independently for each harmonic which is favourable with regard to memory usage and parallelisation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا