ﻻ يوجد ملخص باللغة العربية
High-efficient direct numerical methods are currently in demand for optimization procedures in the fields of both conventional diffractive and metasurface optics. With a view of extending the scope of application of the previously proposed Generalized Source Method in the curvilinear coordinates, which has theoretical $Oleft(Nlog Nright)$ asymptotic numerical complexity, a new method formulation is developed for gratings with sharp edges. It is shown that corrugation corners can be treated as effective medium interfaces within the rationale of the method. Moreover, the given formulation is demonstrated to allow for application of the same derivation as one used in classical electrodynamics to derive the interface conditions. This yields continuous combinations of the fields and metric tensor components, which can be directly Fourier factorized. Together with an efficient algorithm the new formulation is demonstrated to substantially increase the computation accuracy for given computer resources.
A high fidelity flow simulation for complex geometries for high Reynolds number ($Re$) flow is still very challenging, which requires more powerful computational capability of HPC system. However, the development of HPC with traditional CPU architect
The article encloses a new Fourier space method for rigorous optical simulation of 3D periodic dielectric structures. The method relies upon rigorous solution of Maxwells equations in complex composite structures by the Generalized Source Method. Ext
We describe the software package FELIX that solves the equations of the time-dependent generator coordinate method (TDGCM) in N-dimensions (N $geq$ 1) under the Gaussian overlap approximation. The numerical resolution is based on the Galerkin finite
We investigate the applicability of curvilinear grids in the context of astrophysical simulations and WENO schemes. With the non-smooth mapping functions from Calhoun et al. (2008), we can tackle many astrophysical problems which were out of scope wi
We present a numerical method for the solution of linear magnetostatic problems in domains with a symmetry direction, including axial and translational symmetry. The approach uses a Fourier series decomposition of the vector potential formulation alo