ﻻ يوجد ملخص باللغة العربية
We propose a method using a long short-term memory (LSTM) network to estimate the noise power spectral density (PSD) of single-channel audio signals represented in the short time Fourier transform (STFT) domain. An LSTM network common to all frequency bands is trained, which processes each frequency band individually by mapping the noisy STFT magnitude sequence to its corresponding noise PSD sequence. Unlike deep-learning-based speech enhancement methods that learn the full-band spectral structure of speech segments, the proposed method exploits the sub-band STFT magnitude evolution of noise with a long time dependency, in the spirit of the unsupervised noise estimators described in the literature. Speaker- and speech-independent experiments with different types of noise show that the proposed method outperforms the unsupervised estimators, and generalizes well to noise types that are not present in the training set.
In this work we propose a neuromorphic hardware based signal equalizer by based on the deep learning implementation. The proposed neural equalizer is plasticity trainable equalizer which is different from traditional model designed based DFE. A train
Solar energy is a clean and renewable energy. Photovoltaic (PV) power is an important way to utilize solar energy. Accurate PV power forecast is crucial to the large-scale application of PV power and the stability of electricity grid. This paper prop
Accurate and efficient models for rainfall runoff (RR) simulations are crucial for flood risk management. Most rainfall models in use today are process-driven; i.e. they solve either simplified empirical formulas or some variation of the St. Venant (
Road surface friction significantly impacts traffic safety and mobility. A precise road surface friction prediction model can help to alleviate the influence of inclement road conditions on traffic safety, Level of Service, traffic mobility, fuel eff
We investigate a new method to augment recurrent neural networks with extra memory without increasing the number of network parameters. The system has an associative memory based on complex-valued vectors and is closely related to Holographic Reduced