ترغب بنشر مسار تعليمي؟ اضغط هنا

The SXS Collaboration catalog of binary black hole simulations

360   0   0.0 ( 0 )
 نشر من قبل Leo Stein
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Accurate models of gravitational waves from merging black holes are necessary for detectors to observe as many events as possible while extracting the maximum science. Near the time of merger, the gravitational waves from merging black holes can be computed only using numerical relativity. In this paper, we present a major update of the Simulating eXtreme Spacetimes (SXS) Collaboration catalog of numerical simulations for merging black holes. The catalog contains 2018 distinct configurations (a factor of 11 increase compared to the 2013 SXS catalog), including 1426 spin-precessing configurations, with mass ratios between 1 and 10, and spin magnitudes up to 0.998. The median length of a waveform in the catalog is 39 cycles of the dominant $ell=m=2$ gravitational-wave mode, with the shortest waveform containing 7.0 cycles and the longest 351.3 cycles. We discuss improvements such as correcting for moving centers of mass and extended coverage of the parameter space. We also present a thorough analysis of numerical errors, finding typical truncation errors corresponding to a waveform mismatch of $sim 10^{-4}$. The simulations provide remnant masses and spins with uncertainties of 0.03% and 0.1% ($90^{text{th}}$ percentile), about an order of magnitude better than analytical models for remnant properties. The full catalog is publicly available at https://www.black-holes.org/waveforms .

قيم البحث

اقرأ أيضاً

The RIT numerical relativity group is releasing a public catalog of black-hole-binary waveforms. The initial release of the catalog consists of 126 recent simulations that include precessing and non precessing systems with mass ratios $q=m_1/m_2$ in the range $1/6leq qleq1$. The catalog contains information about the initial data of the simulation, the waveforms extrapolated to infinity, as well as information about the peak luminosity and final remnant black hole properties. These waveforms can be used to independently interpret gravitational wave signals from laser interferometric detectors and
The third release of the RIT public catalog of numerical relativity black-hole-binary waveforms url{http://ccrg.rit.edu/~RITCatalog} consists of 777 accurate simulations that include 300 precessing and 477 nonprecessing binary systems with mass ratio s $q=m_1/m_2$ in the range $1/15leq qleq1$ and individual spins up to $s/m^2=0.95$. The catalog also provides initial parameters of the binary, trajectory information, peak radiation, and final remnant black hole properties. The waveforms are corrected for the center of mass drifting and are extrapolated to future null infinity. We successfully test this correction comparing with simulations of low radition content initial data. As an initial application of this waveform catalog we reanalyze all the peak radiation and remnant properties to find new, simple, correlations among them for practical astrophysical usage.
The RIT numerical relativity group is releasing the second public catalog of black-hole-binary waveforms url{http://ccrg.rit.edu/~RITCatalog}. This release consists of 320 accurate simulations that include 46 precessing and 274 nonprecessing binary s ystems with mass ratios $q=m_1/m_2$ in the range $1/6leq qleq1$ and individual spins up to $s/m^2=0.95$. The new catalog contains search and ordering tools for the waveforms based on initial parameters of the binary, trajectory information, peak radiation, and final remnant black hole properties. The final black hole remnant properties provided here can be used to model the merger of black-hole binaries from its initial configurations. The waveforms are extrapolated to infinite observer location and can be used to independently interpret gravitational wave signals from laser interferometric detectors. As an application of this waveform catalog we reanalyze the signal of GW150914 implementing parameter estimation techniques that make use of only numerical waveforms without any reference to information from phenomenological models.
Only numerical relativity simulations can capture the full complexities of binary black hole mergers. These simulations, however, are prohibitively expensive for direct data analysis applications such as parameter estimation. We present two new fast and accurate surrogate models for the outputs of these simulations: the first model, NRSur7dq4, predicts the gravitational waveform and the second model, RemnantModel, predicts the properties of the remnant black hole. These models extend previous 7-dimensional, non-eccentric precessing models to higher mass ratios, and have been trained against 1528 simulations with mass ratios $qleq4$ and spin magnitudes $chi_1,chi_2 leq 0.8$, with generic spin directions. The waveform model, NRSur7dq4, which begins about 20 orbits before merger, includes all $ell leq 4$ spin-weighted spherical harmonic modes, as well as the precession frame dynamics and spin evolution of the black holes. The final black hole model, RemnantModel, models the mass, spin, and recoil kick velocity of the remnant black hole. In their training parameter range, both models are shown to be more accurate than existing models by at least an order of magnitude, with errors comparable to the estimated errors in the numerical relativity simulations. We also show that the surrogate models work well even when extrapolated outside their training parameter space range, up to mass ratios $q=6$.
In General Relativity, the spacetimes of black holes have three fundamental properties: (i) they are the same, to lowest order in spin, as the metrics of stellar objects; (ii) they are independent of mass, when expressed in geometric units; and (iii) they are described by the Kerr metric. In this paper, we quantify the upper bounds on potential black-hole metric deviations imposed by observations of black-hole shadows and of binary black-hole inspirals in order to explore the current experimental limits on possible violations of the last two predictions. We find that both types of experiments provide correlated constraints on deviation parameters that are primarily in the tt-components of the spacetimes, when expressed in areal coordinates. We conclude that, currently, there is no evidence for a deviations from the Kerr metric across the 8 orders of magnitudes in masses and 16 orders in curvatures spanned by the two types of black holes. Moreover, because of the particular masses of black holes in the current sample of gravitational-wave sources, the correlations imposed by the two experiments are aligned and of similar magnitudes when expressed in terms of the far field, post-Newtonian predictions of the metrics. If a future coalescing black-hole binary with two low-mass (e.g., ~3 Msun) components is discovered, the degeneracy between the deviation parameters can be broken by combining the inspiral constraints with those from the black-hole shadow measurements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا