ﻻ يوجد ملخص باللغة العربية
The robust detection of statistical dependencies between the components of a complex system is a key step in gaining a network-based understanding of the system. Because of their simplicity and low computation cost, pairwise statistics are commonly used in a variety of fields. Those approaches, however, typically suffer from one or more limitations such as lack of confidence intervals requiring reliance on surrogate data, sensitivity to binning, sparsity of the signals, or short duration of the records. In this paper we develop a method for assessing pairwise dependencies in point processes that overcomes these challenges. Given two point processes $X$ and $Y$ each emitting a given number of events $m$ and $n$ in a fixed period of time $T$, we derive exact analytical expressions for the expected value and standard deviation of the number of pairs events $X_i,Y_j$ separated by a delay of less than $tau$ one should expect to observe if $X$ and $Y$ were i.i.d. uniform random variables. We prove that this statistic is normally distributed in the limit of large $T$, which enables the definition of a Z-score characterising the likelihood of the observed number of coincident events happening by chance. We numerically confirm the analytical results and show that the property of normality is robust in a wide range of experimental conditions. We then experimentally demonstrate the predictive power of the method using a noisy version of the common shock model. Our results show that our approach has excellent behaviour even in scenarios with low event density and/or when the recordings are short.
We are interested in estimating the location of what we call smooth change-point from $n$ independent observations of an inhomogeneous Poisson process. The smooth change-point is a transition of the intensity function of the process from one level to
The plurigaussian model is particularly suited to describe categorical regionalized variables. Starting from a simple principle, the thresh-olding of one or several Gaussian random fields (GRFs) to obtain categories, the plurigaussian model is well a
We propose statistical inferential procedures for panel data models with interactive fixed effects in a kernel ridge regression framework.Compared with traditional sieve methods, our method is automatic in the sense that it does not require the choic
This paper concerns space-sphere point processes, that is, point processes on the product space of $mathbb R^d$ (the $d$-dimensional Euclidean space) and $mathbb S^k$ (the $k$-dimen-sional sphere). We consider specific classes of models for space-sph
There are various approaches to the problem of how one is supposed to conduct a statistical analysis. Different analyses can lead to contradictory conclusions in some problems so this is not a satisfactory state of affairs. It seems that all approach