ﻻ يوجد ملخص باللغة العربية
The magnetic chemically peculiar (Ap/CP2) star 21 Com has been extensively studied in the past, albeit with widely differing and sometimes contradictory results, in particular concerning the occurrence of short term variability between about 5 to 90 minutes. We have performed a new investigation of 21 Com using MOST satellite and high-cadence ground-based photometry, time series spectroscopy, and evolutionary and pulsational modeling. Our analysis confirms that 21 Com is a classical CP2 star showing increased abundances of, in particular, Cr and Sr. From spectroscopic analysis, we have derived Teff = 8900(200) K, log g = 3.9(2), and vsini = 63(2) km/s. Our modeling efforts suggest that 21 Com is a main sequence (MS) star seen equator-on with a mass of 2.29(10) M(Sun) and a radius of R = 2.6(2) R(Sun). Our extensive photometric data confirm the existence of rotational light variability with a period of 2.05219(2) d. However, no significant frequencies with a semi-amplitude exceeding 0.2 mmag were found in the frequency range from 5 to 399 c/d. Our RV data also do not indicate short-term variability. We calculated pulsational models assuming different metallicities and ages, which do not predict the occurrence of unstable modes. The star 18 Com, often employed as comparison star for 21 Com in the past, has been identified as a periodic variable (P = 1.41645 d). While it is impossible to assess whether 21 Com has exhibited short-term variability in the past, the new observational data and several issues/inconsistencies identified in previous studies strongly suggest that 21 Com is neither a delta Scuti nor a roAp pulsator but a well-behaved CP2 star exhibiting its trademark rotational variability.
We present the 13-year light curve of HW Boo between 2001 May and 2014 May. We identified 12 outbursts, which typically lasted 2 to 5 days, with an amplitude of 2.7 to 3.6 magnitudes. Time resolved photometry during two outbursts revealed small hump-
We present the results of a photometry campaign of TU Com performed over a five-year time span. The analysis showed that the possible Blazhko period of 75 days published by the General Catalogue of Variable Stars is not correct. We identified two Bla
The enigmatic X-ray emission from the bright optical star, $gamma$ Cassiopeia, is a long-standing problem. $gamma$ Cas is known to be a binary system consisting of a Be-type star and a low-mass ($Msim 1,M_odot$) companion of unknown nature orbiting i
We have performed a new search for DPVs of short period in the ASAS catalog (Pojmanski, G., 1997), focusing on those stars with orbital periods between 2 to 3 days which also show variations in their brightness. From a total of 244 objects, we have f
We report the occurrence of a deep low state in the eclipsing short-period cataclysmic variable IR Com, lasting more than two years. Spectroscopy obtained in this state shows the system as a detached white dwarf plus low-mass companion, indicating th