ﻻ يوجد ملخص باللغة العربية
We investigate how obliquity affects stratospheric humidity using a 3D general circulation model and find the stratosphere under high obliquity could be over 3 orders of magnitude moister than under the low obliquity equivalent, even with the same global annual mean surface temperature. Three complexities that only exist under high obliquity are found to be causally relevant. 1) Seasonal variation under high obliquity causes extremely high surface temperatures to occur during polar days, moistening the polar air that may eventually enter the stratosphere. 2) Unlike the low obliquity scenario where the cold trap efficiently freezes out water vapor, the high obliquity stratosphere gets most of its moisture input from high latitudes, and thus largely bypasses the cold trap. 3) A high obliquity climate tends to be warmer than its low obliquity equivalent, thus moistening the atmosphere as a whole. We found each of the above factors could significantly increase stratospheric humidity. These results indicate that, for an earth-like exoplanet, it is more likely to detect water from surface evaporation if the planet is under high obliquity. The water escape could cause a high obliquity planet to loss habitability before the runaway greenhouse takes place.
A consistent finding of high obliquity simulations is that they are warmer than their low obliquity counterparts when the climate is cold. Ice-albedo feedback has been suggested as a possible mechanism. In this study, we find that warmer climate unde
We investigate how the meridional circulation and baroclinic eddies change with insolation and rotation rate, under high and zero obliquity setups, using a general circulation model. The total circulation is considered as superposition of circulation
We investigate tidal dissipation of obliquity in hot Jupiters. Assuming an initial random orientation of obliquity and parameters relevant to the observed population, the obliquity of hot Jupiters does not evolve to purely aligned systems. In fact, t
We measure a tilt of 86+-6 deg between the sky projections of the rotation axis of the WASP-7 star, and the orbital axis of its close-in giant planet. This measurement is based on observations of the Rossiter-McLaughlin (RM) effect with the Planet Fi
We place the first constraints on the obliquity of a planetary-mass companion (PMC) outside of the Solar System. Our target is the directly imaged system 2MASS J01225093-2439505 (2M0122), which consists of a 120 Myr 0.4 M_sun star hosting a 12-27 M_J