ﻻ يوجد ملخص باللغة العربية
Strong coupling of plasmonic excitations and dipolar emitters, such as organic molecules, have been studied extensively in the last years. The questions whether strong coupling can be achieved with a single molecule only and how this is unambiguously proven are still under debate. A critical issue of plasmonic in contrast to photonic systems is additional excitonic line broadening, which is often neglected when modeling such systems. This has led to too optimistic design predictions or incorrect interpretation of ambiguous experimental data, for example in models relying on Maxwell solvers without self-consistent incorporation of line broadening effects. In this paper, we present a heuristic modeling approach for strongly coupled systems based on plasmonic nanoparticles and dipolar emitters that accounts for such broadening and elucidates on recent experiments with single emitters. We explicitly focus on a clear and intuitive classical description that utilizes well-established methods, easy to use within typical Maxwell solvers. The heuristic model (i) provides experimentally relevant numbers like emitter densities and spectra (ii) allows to discriminate systems, which can reach the strong coupling regime from those, which can not (iii) allows to identify optimization routes and (iv) nicely matches with experimental findings. In particular, we employ an approach related to quasi normal modes and extinction simulations where the excitonic system is represented by a frequency dependent permittivity. As examples, we investigate two configurations with many, but also single emitters, which have been studied in recent experiments.
Strong-coupling of monolayer metal dichalcogenide semiconductors with light offers encouraging prospects for realistic exciton devices at room temperature. However, the nature of this coupling depends extremely sensitively on the optical confinement
An emitter in the vicinity of a metal nanostructure is quenched by its decay through non-radiative channels, leading to the belief in a zone of inactivity for emitters placed within $<$10nm of a plasmonic nanostructure. Here we demonstrate that in ti
Plasmonic dimer cavities can induce extreme electric-field hot spots that allow one to access ultrastrong coupling regimes using Raman-type spectroscopy on single vibrating molecules. Using a generalized master equation, we study resonant Raman scatt
In the quest to enhance light-matter interactions and miniaturize photonics devices, it is crucial to create a strong field enhancement with lower material losses. Here we combine a plasmonic Fano resonance supported by the silver cluster and anapole
Plasmonic nanostructures with singular geometries can exhibit a broadband scattering response that at first glance appears to violate the lower bounds for the radiation quality (Q) factor of small radiators, known as the Chu limit. Here we explore th