ﻻ يوجد ملخص باللغة العربية
Given a subdirectly irreducible *-regular ring R, we show that R is a homomorphic image of a regular *-subring of an ultraproduct of the (simple) eRe, e in the minimal ideal of R; moreover, R (with unit) is directly finite if all eRe are unit-regular. Finally, unit-regularity is shown for every member of the variety generated by artinian *-regular rings (endowed with unit and pseudo-inversion).
The kernel relation $K$ on the lattice $mathcal{L}(mathcal{CR})$ of varieties of completely regular semigroups has been a central component in many investigations into the structure of $mathcal{L}(mathcal{CR})$. However, apart from the $K$-class of t
Several complete congruences on the lattice L(CR) of varieties of completely regular semi- groups have been fundamental to studies of the structure of L(CR). These are the kernel relation K , the left trace relation Tl , the right trace relation Tr a
We show that a von Neumann regular ring with involution is directly finite provided that it admits a representation as a ring of endomorphisms (the involution given by taking adjoints) of a vector space endowed with a non-degenerate orthosymmetric sesquilinear form.
We show that a subdirectly irreducible *-regular ring admits a representation within some inner product space provided so does its ortholattice of projections.
We survey recent progress on the realization problem for von Neumann regular rings, which asks whether every countable conical refinement monoid can be realized as the monoid of isoclasses of finitely generated projective right $R$-modules over a von Neumann regular ring $R$.