ترغب بنشر مسار تعليمي؟ اضغط هنا

Ultrafast Video Attention Prediction with Coupled Knowledge Distillation

122   0   0.0 ( 0 )
 نشر من قبل Jia Li
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Large convolutional neural network models have recently demonstrated impressive performance on video attention prediction. Conventionally, these models are with intensive computation and large memory. To address these issues, we design an extremely light-weight network with ultrafast speed, named UVA-Net. The network is constructed based on depth-wise convolutions and takes low-resolution images as input. However, this straight-forward acceleration method will decrease performance dramatically. To this end, we propose a coupled knowledge distillation strategy to augment and train the network effectively. With this strategy, the model can further automatically discover and emphasize implicit useful cues contained in the data. Both spatial and temporal knowledge learned by the high-resolution complex teacher networks also can be distilled and transferred into the proposed low-resolution light-weight spatiotemporal network. Experimental results show that the performance of our model is comparable to 11 state-of-the-art models in video attention prediction, while it costs only 0.68 MB memory footprint, runs about 10,106 FPS on GPU and 404 FPS on CPU, which is 206 times faster than previous models.



قيم البحث

اقرأ أيضاً

93 - Miao Liu , Xin Chen , Yun Zhang 2019
We address the challenging problem of learning motion representations using deep models for video recognition. To this end, we make use of attention modules that learn to highlight regions in the video and aggregate features for recognition. Specific ally, we propose to leverage output attention maps as a vehicle to transfer the learned representation from a motion (flow) network to an RGB network. We systematically study the design of attention modules, and develop a novel method for attention distillation. Our method is evaluated on major action benchmarks, and consistently improves the performance of the baseline RGB network by a significant margin. Moreover, we demonstrate that our attention maps can leverage motion cues in learning to identify the location of actions in video frames. We believe our method provides a step towards learning motion-aware representations in deep models. Our project page is available at https://aptx4869lm.github.io/AttentionDistillation/
Video captioning is a challenging task that requires a deep understanding of visual scenes. State-of-the-art methods generate captions using either scene-level or object-level information but without explicitly modeling object interactions. Thus, the y often fail to make visually grounded predictions, and are sensitive to spurious correlations. In this paper, we propose a novel spatio-temporal graph model for video captioning that exploits object interactions in space and time. Our model builds interpretable links and is able to provide explicit visual grounding. To avoid unstable performance caused by the variable number of objects, we further propose an object-aware knowledge distillation mechanism, in which local object information is used to regularize global scene features. We demonstrate the efficacy of our approach through extensive experiments on two benchmarks, showing our approach yields competitive performance with interpretable predictions.
In this work, we consider transferring the structure information from large networks to compact ones for dense prediction tasks in computer vision. Previous knowledge distillation strategies used for dense prediction tasks often directly borrow the d istillation scheme for image classification and perform knowledge distillation for each pixel separately, leading to sub-optimal performance. Here we propose to distill structured knowledge from large networks to compact networks, taking into account the fact that dense prediction is a structured prediction problem. Specifically, we study two structured distillation schemes: i) pair-wise distillation that distills the pair-wise similarities by building a static graph; and ii) holistic distillation that uses adversarial training to distill holistic knowledge. The effectiveness of our knowledge distillation approaches is demonstrated by experiments on three dense prediction tasks: semantic segmentation, depth estimation and object detection. Code is available at: https://git.io/StructKD
Knowledge distillation (KD) has recently emerged as an efficacious scheme for learning compact deep neural networks (DNNs). Despite the promising results achieved, the rationale that interprets the behavior of KD has yet remained largely understudied . In this paper, we introduce a novel task-oriented attention model, termed as KDExplainer, to shed light on the working mechanism underlying the vanilla KD. At the heart of KDExplainer is a Hierarchical Mixture of Experts (HME), in which a multi-class classification is reformulated as a multi-task binary one. Through distilling knowledge from a free-form pre-trained DNN to KDExplainer, we observe that KD implicitly modulates the knowledge conflicts between different subtasks, and in reality has much more to offer than label smoothing. Based on such findings, we further introduce a portable tool, dubbed as virtual attention module (VAM), that can be seamlessly integrated with various DNNs to enhance their performance under KD. Experimental results demonstrate that with a negligible additional cost, student models equipped with VAM consistently outperform their non-VAM counterparts across different benchmarks. Furthermore, when combined with other KD methods, VAM remains competent in promoting results, even though it is only motivated by vanilla KD. The code is available at https://github.com/zju-vipa/KDExplainer.
3D convolutional neural networks have achieved promising results for video tasks in computer vision, including video saliency prediction that is explored in this paper. However, 3D convolution encodes visual representation merely on fixed local space time according to its kernel size, while human attention is always attracted by relational visual features at different time of a video. To overcome this limitation, we propose a novel Spatio-Temporal Self-Attention 3D Network (STSANet) for video saliency prediction, in which multiple Spatio-Temporal Self-Attention (STSA) modules are employed at different levels of 3D convolutional backbone to directly capture long-range relations between spatio-temporal features of different time steps. Besides, we propose an Attentional Multi-Scale Fusion (AMSF) module to integrate multi-level features with the perception of context in semantic and spatio-temporal subspaces. Extensive experiments demonstrate the contributions of key components of our method, and the results on DHF1K, Hollywood-2, UCF, and DIEM benchmark datasets clearly prove the superiority of the proposed model compared with all state-of-the-art models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا