ترغب بنشر مسار تعليمي؟ اضغط هنا

Radial abundance gradients in the outer Galactic disk as traced by main-sequence OB stars

64   0   0.0 ( 0 )
 نشر من قبل Simone Daflon
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using a sample of 31 main-sequence OB stars located between galactocentric distances 8.4 - 15.6 kpc, we aim to probe the present-day radial abundance gradients of the Galactic disk. The analysis is based on high-resolution spectra obtained with the MIKE spectrograph on the Magellan Clay 6.5-m telescope on Las Campanas. We used a non-NLTE analysis in a self-consistent semi-automatic routine based on TLUSTY and SYNSPEC to determine atmospheric parameters and chemical abundances. Stellar parameters (effective temperature, surface gravity, projected rotational velocity, microturbulence, and macroturbulence) and silicon and oxygen abundances are presented for 28 stars located beyond 9 kpc from the Galactic centre plus three stars in the solar neighborhood. The stars of our sample are mostly on the main-sequence, with effective temperatures between 20800 - 31300 K, and surface gravities between 3.23 - 4.45 dex. The radial oxygen and silicon abundance gradients are negative and have slopes of -0.07 dex/kpc and -0.09 dex/kpc, respectively, in the region $8.4 leq R_G leq 15.6$,kpc. The obtained gradients are compatible with the present-day oxygen and silicon abundances measured in the solar neighborhood and are consistent with radial metallicity gradients predicted by chemodynamical models of Galaxy Evolution for a subsample of young stars located close to the Galactic plane.



قيم البحث

اقرأ أيضاً

The aim of this study is to analyse and determine elemental abundances for a large sample of distant B stars in the outer Galactic disk in order to constrain the chemical distribution of the Galactic disk and models of chemical evolution of the Galax y. Here, we present preliminary results on a few stars along with the adopted methodology based on securing simultaneous O and Si ionization equilibria with consistent NLTE model atmospheres.
The relationship between abundances and orbital parameters for 235 F- and G-type intermediate- and low- mass stars in the Galaxy is analyzed. We found that there are abundance gradients in the thin disk in both radial and vertical directions (-0.116 dex/kpc and -0.309 dex/kpc respectively). The gradients appear to be flatter as the Galaxy evolves. No gradient is found in the thick disk based on 18 thick disk stars. These results indicate that the ELS model is mainly suitable for the evolution of the thin disk, while the SZ model is more suitable for the evolution of the thick disk. Additionally, these results indicate that in-fall and out-flow processes play important roles in the chemical evolution of the Galaxy.
Context: Galactic abundance gradients set strong constraints to chemo-dynamical evolutionary models of the Milky Way. Given the PL relations that provide accurate distances and the large number of spectral lines, Cepheids are excellent tracers of the present-day abundance gradients. Aims: We want to measure the Galactic abundance gradient of several chemical elements. While the slope of the Cepheid iron gradient did not vary much from the very first studies, the gradients of the other elements are not that well constrained. In this paper we focus on the inner and outer regions of the Galactic thin disk. Methods: We use HR spectra (FEROS, ESPADONS, NARVAL) to measure the abundances of several light (Na, Al), alpha (Mg, Si, S, Ca), and heavy elements (Y, Zr, La, Ce, Nd, Eu) in a sample of 65 Milky Way Cepheids. Combining these results with accurate distances from period-Wesenheit relations in the NIR enables us to determine the abundance gradients in the Milky Way. Results: Our results are in good agreement with previous studies on either Cepheids or other tracers. In particular, we confirm an upward shift of approximatively 0.2 dex for the Mg abundances, as has recently been reported. We also confirm the existence of a gradient for all the heavy elements studied in the context of a LTE analysis. However, for Y, Nd, and especially La, we find lower abundances for Cepheids in the outer disk than reported in previous studies, leading to steeper gradients. This effect can be explained by the differences in the line lists used by different groups. Conclusions: Our data do not support a flattening of the gradients in the outer disk, in agreement with recent Cepheid studies and chemo-dynamical simulations. This is in contrast to the open cluster observations but remains compatible with a picture where the transition zone between the inner disk and the outer disk would move outward with time.
We present estimates of stellar age and mass for 0.93 million Galactic disk main sequence turn-off and sub-giant stars from the LAMOST Galactic Spectroscopic Surveys. The ages and masses are determined by matching with stellar isochrones using Bayesi an algorithm, utilizing effective temperature $T_{rm eff}$, absolute magnitude ${rm M}_V$, metallicity [Fe/H] and $alpha$-element to iron abundance ratio [$alpha$/Fe] deduced from the LAMOST spectra. Extensive examinations suggest the age and mass estimates are robust. The overall sample stars have a median error of 34 per cent for the age estimates, and half of the stars older than 2,Gyr have age uncertainties of only 20--30 per cent. Median error for the mass estimates of the whole sample stars is $sim8$ per cent. The huge dataset demonstrates good correlations among stellar age, [Fe/H] ([$alpha$/H]) and [$alpha$/Fe]. Particularly, double sequence features are revealed in the both the age--[$alpha$/Fe] and age--[Fe/H]([$alpha$/H]) spaces. In the [Fe/H]--[$alpha$/Fe] space, stars of 8--10,Gyr exhibit both the thin and thick disk sequences, while younger (older) stars show only the thin (thick) disk sequence, indicating that the thin disk became prominent 8--10,Gyr ago, while the thick disk formed earlier and almost quenched 8,Gyr ago. Stellar ages exhibit positive vertical and negative radial gradients across the disk, and the outer disk of $Rgtrsim$,9,kpc exhibits a strong flare in stellar age distribution.
In contrast to most other galaxies, star-formation rates in the Milky Way can be estimated directly from Young Stellar Objects (YSOs). In the Central Molecular Zone (CMZ) the star-formation rate calculated from the number of YSOs with 24 microns emis sion is up to order of magnitude higher than the value estimated from methods based on diffuse emission (such as free-free emission). Whether this effect is real or whether it indicates problems with either or both star formation rate measures is not currently known. In this paper, we investigate whether estimates based on YSOs could be heavily contaminated by more evolved objects such as main-sequence stars. We present radiative transfer models of YSOs and of main-sequence stars in a constant ambient medium which show that the main-sequence objects can indeed mimic YSOs at 24 microns. However, we show that in some cases the main-sequence models can be marginally resolved at 24 microns, whereas the YSO models are always unresolved. Based on the fraction of resolved MIPS 24 microns sources in the sample of YSOs previously used to compute the star formation rate, we estimate the fraction of misclassified YSOs to be at least 63%, which suggests that the star-formation rate previously determined from YSOs is likely to be at least a factor of three too high.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا