ترغب بنشر مسار تعليمي؟ اضغط هنا

The E-MOSAICS project: tracing galaxy formation and assembly with the age-metallicity distribution of globular clusters

94   0   0.0 ( 0 )
 نشر من قبل Diederik Kruijssen
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present 25 cosmological zoom-in simulations of Milky Way-mass galaxies in the `MOdelling Star cluster population Assembly In Cosmological Simulations within EAGLE (E-MOSAICS) project. E-MOSAICS couples a detailed physical model for the formation, evolution, and disruption of star clusters to the EAGLE galaxy formation simulations. This enables following the co-formation and co-evolution of galaxies and their star cluster populations, thus realising the long-standing promise of using globular clusters (GCs) as tracers of galaxy formation and assembly. The simulations show that the age-metallicity distributions of GC populations exhibit strong galaxy-to-galaxy variations, resulting from differences in their evolutionary histories. We develop a formalism for systematically constraining the assembly histories of galaxies using GC age-metallicity distributions. These distributions are characterised through 13 metrics that we correlate with 30 quantities describing galaxy formation and assembly (e.g. halo properties, formation/assembly redshifts, stellar mass assembly time-scales, galaxy merger statistics), resulting in 20 statistically (highly) significant correlations. The GC age-metallicity distribution is a sensitive probe of the mass growth, metal enrichment, and minor merger history of the host galaxy. No such relation is found between GCs and major mergers, which play a sub-dominant role in GC formation for Milky Way-mass galaxies. Finally, we show how the GC age-metallicity distribution enables the reconstruction of the host galaxys merger tree, allowing us to identify all progenitors with masses $M_*gtrsim10^8$ M$_odot$ for redshifts $1leq zleq2.5$. These results demonstrate that cosmological simulations of the co-formation and co-evolution of GCs and their host galaxies successfully unlock the potential of GCs as quantitative tracers of galaxy formation and assembly.

قيم البحث

اقرأ أيضاً

We set out to compare the age-metallicity relation (AMR) of massive clusters from Magellanic Cloud mass galaxies in the E-MOSAICS suite of numerical cosmological simulations with an amalgamation of observational data of massive clusters in the Large and Small Magellanic Clouds (LMC/SMC). We aim to test if: i) star cluster formation proceeds according to universal physical processes, suggestive of a common formation mechanism for young-massive clusters (YMCs), intermediate-age clusters (IACs), and ancient globular clusters (GCs); ii) massive clusters of all ages trace a continuous AMR; iii) the AMRs of smaller mass galaxies show a shallower relation when compared to more massive galaxies. Our results show that, within the uncertainties, the predicted AMRs of L/SMC-mass galaxies with similar star formation histories to the L/SMC follow the same relation as observations. We also find that the metallicity at which the AMR saturates increases with galaxy mass, which is also found for the field star AMRs. This suggests that relatively low-metallicity clusters can still form in dwarfs galaxies. Given our results, we suggest that ancient GCs share their formation mechanism with IACs and YMCs, in which GCs are the result of a universal process of star cluster formation during the early episodes of star formation in their host galaxies.
The formation histories of globular clusters (GCs) are a key diagnostic for understanding their relation to the evolution of the Universe through cosmic time. We use the suite of 25 cosmological zoom-in simulations of present-day Milky Way-mass galax ies from the E-MOSAICS project to study the formation histories of stars, clusters, and GCs, and how these are affected by the environmental dependence of the cluster formation physics. We find that the median lookback time of GC formation in these galaxies is ${sim}10.73~$Gyr ($z=2.1$), roughly $2.5~$Gyr earlier than that of the field stars (${sim}8.34~$Gyr or $z=1.1$). The epoch of peak GC formation is mainly determined by the time evolution of the maximum cluster mass, which depends on the galactic environment and largely increases with the gas pressure. Different metallicity subpopulations of stars, clusters and GCs present overlapping formation histories, implying that star and cluster formation represent continuous processes. The metal-poor GCs ($-2.5<[rm Fe/H]<-1.5$) of our galaxies are older than the metal-rich GC subpopulation ($-1.0<[rm Fe/H]<-0.5$), forming $12.13~$Gyr and $10.15~$Gyr ago ($z=3.7$ and $z=1.8$), respectively. The median ages of GCs are found to decrease gradually with increasing metallicity, which suggests different GC metallicity subpopulations do not form independently and their spatial and kinematic distributions are the result of their evolution in the context of hierarchical galaxy formation and evolution. We predict that proto-GC formation is most prevalent at $2lesssim z lesssim 3$, which could be tested with observations of lensed galaxies using JWST.
Globular clusters (GCs) are found ubiquitously in massive galaxies and due to their old ages, they are regarded as fossil records of galaxy evolution. Spectroscopic studies of GC systems are often limited to the outskirts of galaxies, where GCs stand out against the galaxy background and serve as bright tracers of galaxy assembly. In this work, we use the capabilities of the Multi Unit Explorer Spectrograph (MUSE) to extract a spectroscopic sample of 722 GCs in the inner regions ($lesssim 3 R_text{eff}$) of 32 galaxies in the Fornax cluster. These galaxies were observed as part of the Fornax 3D project, a MUSE survey that targets early and late-type galaxies within the virial radius of Fornax. After accounting for the galaxy background in the GC spectra, we extracted line-of-sight velocities and determined metallicities of a sub-sample of 238 GCs. We found signatures of rotation within GC systems, and comparing the GC kinematics and that of the stellar body shows that the GCs trace the spheroid of the galaxies. While the red GCs prove to closely follow the metallicity profile of the host galaxy, the blue GCs show a large spread of metallicities but they are generally more metal-poor than the host.
77 - Marta Reina-Campos 2019
It has been a long-standing open question why observed globular cluster (GC) populations of different metallicities differ in their ages and spatial distributions, with metal-poor GCs being the older and radially more extended of the two. We use the suite of 25 Milky Way-mass cosmological zoom-in simulations from the E-MOSAICS project, which self-consistently model the formation and evolution of stellar clusters and their host galaxies, to understand the properties of observed GC populations. We find that the different ages and spatial distributions of metal-poor and metal-rich GCs are the result of regular cluster formation at high redshift in the context of hierarchical galaxy assembly. We also find that metallicity on its own is not a good tracer of accretion, and other properties, such as kinematics, need to be considered.
Globular clusters (GCs) are bright objects that span a wide range of galactocentric distances, and are thus probes of the structure of dark matter (DM) haloes. In this work, we explore whether the projected radial profiles of GCs can be used to infer the structural properties of their host DM haloes. We use the simulated GC populations in a sample of 166 central galaxies from the $(34.4~rm cMpc)^3$ periodic volume of the E-MOSAICS project. We find that more massive galaxies host stellar and GC populations with shallower density profiles that are more radially extended. In addition, the metal-poor GC subpopulations tend to have shallower and more extended profiles than the metal-rich subsamples, which we relate to the preferentially accreted origin of the metal-poor GCs. We find strong correlations between the slopes and effective radii of the radial profiles of the GC populations and the structural properties of the DM haloes, such as their power-law slopes, scale radii, and concentration parameters. Accounting for a dependence on the galaxy stellar mass decreases the scatter of the two-dimensional relations. This suggests that the projected number counts of GCs, combined with their galaxy mass, trace the density profile of the DM halo of their host galaxy. When applied to extragalactic GC systems, we recover the scale radii and the extent of the DM haloes of a sample of ETGs with uncertainties smaller than $0.2~rm dex$. Thus, extragalactic GC systems provide a novel avenue to explore the structure of DM haloes beyond the Local Group.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا