ترغب بنشر مسار تعليمي؟ اضغط هنا

Speedup of adiabatic multiqubit state-transfer by ultrastrong coupling of matter and radiation

59   0   0.0 ( 0 )
 نشر من قبل Alessandro Ridolfo
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Ultrastrongly coupled quantum hardware may increase the speed of quantum state processing in distributed architectures, allowing to approach fault-tolerant threshold. We show that circuit QED architectures in the ultrastrong coupling regime, which has been recently demonstrated with superconductors, may show substantial speedup for a class of adiabatic protocols resilient to the main source of errors, namely the interplay of dynamical Casimir effect and cavity losses.



قيم البحث

اقرأ أيضاً

73 - J. Mornhinweg 2020
We explore the nonlinear response of tailor-cut light-matter hybrid states in a novel regime, where both the Rabi frequency induced by a coherent driving field and the vacuum Rabi frequency set by a cavity field are comparable to the carrier frequenc y of light. In this previously unexplored strong-field limit of ultrastrong coupling, subcycle pump-probe and multi-wave mixing nonlinearities between different polariton states violate the normal-mode approximation while ultrastrong coupling remains intact, as confirmed by our mean-field model. We expect such custom-cut nonlinearities of hybridized elementary excitations to facilitate non-classical light sources, quantum phase transitions, or cavity chemistry with virtual photons.
Light-matter interaction, and the understanding of the fundamental physics behind, is the scenario of emerging quantum technologies. Solid state devices allow the exploration of new regimes where ultrastrong coupling (USC) strengths are comparable to subsystem energies, and new exotic phenomena like quantum phase transitions and ground-state entanglement occur. While experiments so far provided only spectroscopic evidence of USC, we propose a new dynamical protocol for detecting virtual photon pairs in the dressed eigenstates. This is the fingerprint of the violated conservation of the number of excitations, which heralds the symmetry broken by USC. We show that in flux-based superconducting architectures this photon production channel can be coherenly amplified by Stimulated Raman Adiabatic Passage (STIRAP). This provides a unique tool for an unambiguous dynamical detection of USC in present day hardware. Implementing this protocol would provide a benchmark for control of the dynamics of USC architectures, in view of applications to quantum information and microwave quantum photonics.
Reaching the strong coupling regime of light-matter interaction has led to an impressive development in fundamental quantum physics and applications to quantum information processing. Latests advances in different quantum technologies, like supercond ucting circuits or semiconductor quantum wells, show that the ultrastrong coupling regime (USC) can also be achieved, where novel physical phenomena and potential computational benefits have been predicted. Nevertheless, the lack of effective decoupling mechanism in this regime has so far hindered control and measurement processes. Here, we propose a method based on parity symmetry conservation that allows for the generation and reconstruction of arbitrary states in the ultrastrong coupling regime of light-matter interactions. Our protocol requires minimal external resources by making use of the coupling between the USC system and an ancillary two-level quantum system.
We investigate the output generation of squeezed radiation of a cavity photon mode coupled to another off-resonant bosonic excitation. By modulating in time their linear interaction, we predict high degree of output squeezing when the dispersive ultr astrong coupling regime is achieved, i.e., when the interaction rate becomes comparable to the frequency of the lowest energy mode. Our work paves the way to squeezed light generation in frequency domains where the ultrastrong coupling is obtained, e.g., solid-state resonators in the GHz, THz and mid-IR spectral range.
Cavity photon resonators with ultrastrong light-matter interactions are attracting interest both in semiconductor and superconducting systems displaying the capability to manipulate the cavity quantum electrodynamic ground state with controllable phy sical properties. Here we review a series of experiments aimed at probing the ultrastrong light-matter coupling regime, where the vacuum Rabi splitting $Omega$ is comparable to the bare transition frequency $omega$ . We present a new platform where the inter-Landau level transition of a two-dimensional electron gas (2DEG) is strongly coupled to the fundamental mode of deeply subwavelength split-ring resonators operating in the mm-wave range. Record-high values of the normalized light-matter coupling ratio $frac{Omega}{omega}= 0.89$ are reached and the system appears highly scalable far into the microwave range.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا