ترغب بنشر مسار تعليمي؟ اضغط هنا

Unsupervised Domain Adaptation for Multispectral Pedestrian Detection

102   0   0.0 ( 0 )
 نشر من قبل Michael Ying Yang
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Multimodal information (e.g., visible and thermal) can generate robust pedestrian detections to facilitate around-the-clock computer vision applications, such as autonomous driving and video surveillance. However, it still remains a crucial challenge to train a reliable detector working well in different multispectral pedestrian datasets without manual annotations. In this paper, we propose a novel unsupervised domain adaptation framework for multispectral pedestrian detection, by iteratively generating pseudo annotations and updating the parameters of our designed multispectral pedestrian detector on target domain. Pseudo annotations are generated using the detector trained on source domain, and then updated by fixing the parameters of detector and minimizing the cross entropy loss without back-propagation. Training labels are generated using the pseudo annotations by considering the characteristics of similarity and complementarity between well-aligned visible and infrared image pairs. The parameters of detector are updated using the generated labels by minimizing our defined multi-detection loss function with back-propagation. The optimal parameters of detector can be obtained after iteratively updating the pseudo annotations and parameters. Experimental results show that our proposed unsupervised multimodal domain adaptation method achieves significantly higher detection performance than the approach without domain adaptation, and is competitive with the supervised multispectral pedestrian detectors.



قيم البحث

اقرأ أيضاً

Domain adaptation (DA) aims at transferring knowledge from a labeled source domain to an unlabeled target domain. Though many DA theories and algorithms have been proposed, most of them are tailored into classification settings and may fail in regres sion tasks, especially in the practical keypoint detection task. To tackle this difficult but significant task, we present a method of regressive domain adaptation (RegDA) for unsupervised keypoint detection. Inspired by the latest theoretical work, we first utilize an adversarial regressor to maximize the disparity on the target domain and train a feature generator to minimize this disparity. However, due to the high dimension of the output space, this regressor fails to detect samples that deviate from the support of the source. To overcome this problem, we propose two important ideas. First, based on our observation that the probability density of the output space is sparse, we introduce a spatial probability distribution to describe this sparsity and then use it to guide the learning of the adversarial regressor. Second, to alleviate the optimization difficulty in the high-dimensional space, we innovatively convert the minimax game in the adversarial training to the minimization of two opposite goals. Extensive experiments show that our method brings large improvement by 8% to 11% in terms of PCK on different datasets.
Multispectral pedestrian detection has attracted increasing attention from the research community due to its crucial competence for many around-the-clock applications (e.g., video surveillance and autonomous driving), especially under insufficient il lumination conditions. We create a human baseline over the KAIST dataset and reveal that there is still a large gap between current top detectors and human performance. To narrow this gap, we propose a network fusion architecture, which consists of a multispectral proposal network to generate pedestrian proposals, and a subsequent multispectral classification network to distinguish pedestrian instances from hard negatives. The unified network is learned by jointly optimizing pedestrian detection and semantic segmentation tasks. The final detections are obtained by integrating the outputs from different modalities as well as the two stages. The approach significantly outperforms state-of-the-art methods on the KAIST dataset while remain fast. Additionally, we contribute a sanitized version of training annotations for the KAIST dataset, and examine the effects caused by different kinds of annotation errors. Future research of this problem will benefit from the sanitized version which eliminates the interference of annotation errors.
Unsupervised domain adaptive object detection aims to adapt detectors from a labelled source domain to an unlabelled target domain. Most existing works take a two-stage strategy that first generates region proposals and then detects objects of intere st, where adversarial learning is widely adopted to mitigate the inter-domain discrepancy in both stages. However, adversarial learning may impair the alignment of well-aligned samples as it merely aligns the global distributions across domains. To address this issue, we design an uncertainty-aware domain adaptation network (UaDAN) that introduces conditional adversarial learning to align well-aligned and poorly-aligned samples separately in different manners. Specifically, we design an uncertainty metric that assesses the alignment of each sample and adjusts the strength of adversarial learning for well-aligned and poorly-aligned samples adaptively. In addition, we exploit the uncertainty metric to achieve curriculum learning that first performs easier image-level alignment and then more difficult instance-level alignment progressively. Extensive experiments over four challenging domain adaptive object detection datasets show that UaDAN achieves superior performance as compared with state-of-the-art methods.
Conventional unsupervised domain adaptation (UDA) studies the knowledge transfer between a limited number of domains. This neglects the more practical scenario where data are distributed in numerous different domains in the real world. The domain sim ilarity between those domains is critical for domain adaptation performance. To describe and learn relations between different domains, we propose a novel Domain2Vec model to provide vectorial representations of visual domains based on joint learning of feature disentanglement and Gram matrix. To evaluate the effectiveness of our Domain2Vec model, we create two large-scale cross-domain benchmarks. The first one is TinyDA, which contains 54 domains and about one million MNIST-style images. The second benchmark is DomainBank, which is collected from 56 existing vision datasets. We demonstrate that our embedding is capable of predicting domain similarities that match our intuition about visual relations between different domains. Extensive experiments are conducted to demonstrate the power of our new datasets in benchmarking state-of-the-art multi-source domain adaptation methods, as well as the advantage of our proposed model.
This work tackles the unsupervised cross-domain object detection problem which aims to generalize a pre-trained object detector to a new target domain without labels. We propose an uncertainty-aware model adaptation method, which is based on two moti vations: 1) the estimation and exploitation of model uncertainty in a new domain is critical for reliable domain adaptation; and 2) the joint alignment of distributions for inputs (feature alignment) and outputs (self-training) is needed. To this end, we compose a Bayesian CNN-based framework for uncertainty estimation in object detection, and propose an algorithm for generation of uncertainty-aware pseudo-labels. We also devise a scheme for joint feature alignment and self-training of the object detection model with uncertainty-aware pseudo-labels. Experiments on multiple cross-domain object detection benchmarks show that our proposed method achieves state-of-the-art performance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا