ﻻ يوجد ملخص باللغة العربية
Stack Long Short-Term Memory (StackLSTM) is useful for various applications such as parsing and string-to-tree neural machine translation, but it is also known to be notoriously difficult to parallelize for GPU training due to the fact that the computations are dependent on discrete operations. In this paper, we tackle this problem by utilizing state access patterns of StackLSTM to homogenize computations with regard to different discrete operations. Our parsing experiments show that the method scales up almost linearly with increasing batch size, and our parallelized PyTorch implementation trains significantly faster compared to the Dynet C++ implementation.
We investigate a new method to augment recurrent neural networks with extra memory without increasing the number of network parameters. The system has an associative memory based on complex-valued vectors and is closely related to Holographic Reduced
Neural word segmentation has attracted more and more research interests for its ability to alleviate the effort of feature engineering and utilize the external resource by the pre-trained character or word embeddings. In this paper, we propose a new
Associative memory using fast weights is a short-term memory mechanism that substantially improves the memory capacity and time scale of recurrent neural networks (RNNs). As recent studies introduced fast weights only to regular RNNs, it is unknown w
In this work we propose a neuromorphic hardware based signal equalizer by based on the deep learning implementation. The proposed neural equalizer is plasticity trainable equalizer which is different from traditional model designed based DFE. A train
Long short-term memory (LSTM) recurrent neural networks (RNNs) have been shown to give state-of-the-art performance on many speech recognition tasks, as they are able to provide the learned dynamically changing contextual window of all sequence histo