ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards Compact and Real-Time Terahertz Dual-Comb Spectroscopy Employing a Self-Detection Scheme

94   0   0.0 ( 0 )
 نشر من قبل Hua Li
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Due to its fast and high resolution characteristics, dual-comb spectroscopy has attracted an increasing amount of interest since its first demonstration. In the terahertz frequency range where abundant absorption lines (finger prints) of molecules are located, multiheterodyne spectroscopy that employs the dual-comb technique shows an advantage in real-time spectral detection over the traditional Fourier transform infrared or time domain spectroscopies. Here, we demonstrate compact terahertz dual-comb spectroscopy based on quantum cascade lasers (QCLs). In our experiment, two free-running QCLs generate approximately 120 GHz wide combs centered at 4.2 THz, with slightly different repetition frequencies. We observe that $sim$490 nW terahertz power coupling of one laser into the other suffices for laser-self-detecting the dual-comb spectrum that is registered by a microwave spectrum analyzer. Furthermore, we demonstrate practical terahertz transmission dual-comb spectroscopy with our device, by implementing a short air path at room temperature. Spectra are shown of semiconductor samples and of moist air, the latter allowing rapid monitoring of the relative humidity. Our devices should be readily extendable to perform imaging, microscopy and near-field microscopy in the terahertz regime.

قيم البحث

اقرأ أيضاً

291 - D. Lisak 2021
Cavity ring-down spectroscopy is a ubiquitous optical method used to study light-matter interactions with high resolution, sensitivity and accuracy. However, it has never been performed with the multiplexing advantages of direct frequency comb spectr oscopy without sacrificing orders of magnitude of resolution. We present dual-comb cavity ring-down spectroscopy (DC-CRDS) based on the parallel heterodyne detection of ring-down signals with a local oscillator comb to yield absorption and dispersion spectra. These spectra are obtained from widths and positions of cavity modes. We present two approaches which leverage the dynamic cavity response to coherently or randomly driven changes in the amplitude or frequency of the probe field. Both techniques yield accurate spectra of methane - an important greenhouse gas and breath biomarker. The high sensitivity and accuracy of broadband DC-CRDS, shows promise for applications like studies of the structure and dynamics of large molecules, multispecies trace gas detection and isotopic composition.
Broadband dual-comb spectroscopy (DCS) based on portable mode-locked fiber frequency combs is a powerful tool for in situ, calibration free, multi-species spectroscopy. While the acquisition of a single spectrum with mode-locked DCS typically takes m icroseconds to milliseconds, the applications of these spectrometers have generally been limited to systems and processes with time changes on the order of seconds or minutes due to the need to average many spectra to reach a high signal-to-noise ratio (SNR). Here, we demonstrate high-speed, continuous, fiber mode-locked laser DCS with down to 11 $mu$s time resolution. We achieve this by filtering the comb spectra using portable Fabry-Perot cavities to generate filtered combs with 1 GHz tooth spacing. The 1 GHz spacing increases the DCS acquisition speed and SNR for a given optical bandwidth while retaining a sufficient spacing to resolve absorption features over a wide range of conditions. We measure spectra of methane inside a rapid compression machine throughout the 16 ms compression cycle with 133 cm$^{-1}$ bandwidth (4000 comb teeth) and 1.4 ms time resolution by spectrally filtering one of the combs. By filtering both combs, we measured a single-shot, 25 cm$^{-1}$ (750 comb teeth) spectrum of CO around 6330 cm$^{-1}$ in 11 $mu$s. The technique enables simultaneously high-speed and high-resolution DCS measurements, and can be applied anywhere within the octave-spanning spectrum of robust and portable fiber mode-locked frequency combs.
Fast-responding detector arrays are commonly used for imaging rapidly-changing scenes. Besides array detectors, a single-pixel detector combined with a broadband optical spectrum can also be used for rapid imaging by mapping the spectrum into a spati al coordinate grid and then rapidly measuring the spectrum. Here, optical frequency combs generated from high-$Q$ silica microresonators are used to implement this method. The microcomb is dispersed in two spatial dimensions to measure a test target. The target-encoded spectrum is then measured by multi-heterodyne beating with another microcomb having a slightly different repetition rate, enabling an imaging frame rate up to 200 kHz and fillrates as high as 48 MegaPixels/s. The system is used to monitor the flow of microparticles in a fluid cell. Microcombs in combination with a monolithic waveguide grating array imager could greatly magnify these results by combining the spatial parallelism of detector arrays with spectral parallelism of optics.
We report a broadband terahertz time-domain spectroscopy (THz-TDS) which enables twenty vibrational modes of adenosine nucleoside to be resolved in a wide frequency range of 1-20 THz. The observed spectroscopic features of adenosine are in good agree ment with the published spectra obtained using Fourier Transform Infrared Spectroscopy (FTIR) and Raman spectroscopy. This much-extended bandwidth leads to enhanced material characterization capability as it provides spectroscopic information on both intra-molecular and inter-molecular vibrations. In addition, we also report a low-cost Frequency Modulation Continuous Wave (FMCW) imaging system which has a fast measurement speed of 40,000 waveforms per second. Cross-sectional imaging capability through cardboard has also been demonstrated using its excellent penetration capability at a frequency range of 76-81 GHz. We anticipate that the integration of these two complementary imaging technologies would be highly desirable for many real-world applications because it provides both spectroscopic discrimination and penetration capabilities in a single instrument.
Dual-comb sources with equally spaced and low phase noise frequency lines are of great importance for high resolution spectroscopy and metrology. In the terahertz frequency range, electrically pumped semiconductor quantum cascade lasers (QCLs) are su itable candidates for frequency comb and dual-comb operation. For a single laser frequency comb, the repetition rate can be locked using a microwave injection locking and the carrier frequency can be locked to a highly stable source. However, for the locking of two laser combs, four frequencies (two repetition rates and two carrier offset frequencies) should be simultaneously locked; If one only refers to the dual-comb signal, two relative frequencies, i.e., the offset frequency and repetition frequency of one laser against those of the other laser, should be locked. Although the locking techniques that have been successfully used for a single laser comb can be, in principle, applied to a dual-comb laser source, the complete locking considerably complicates the implementation of such a system. Here, we propose a method to stabilize a terahertz QCL dual-comb source by phase locking one of the dual-comb lines to a radio frequency (RF) synthesizer. This technique forces one of the lasers to follow the tone of the other one (keeping the sum of the carrier offset frequency difference and repetition frequency difference between the two laser combs as a constant) by exploiting a laser self-detection that avoids the use of an external detector. Through the demonstration of this locking technique, we demonstrate that the dual-comb can generate periodic pulses over a 2 us time scale, showing that the terahertz QCL comb without a control of the repetition rate can produce pulsed-type waveforms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا