ﻻ يوجد ملخص باللغة العربية
In semiconductor physics, many essential optoelectronic material parameters can be experimentally revealed via optical spectroscopy in sufficiently large magnetic fields. For monolayer transition-metal dichalcogenide semiconductors, this field scale is substantial --tens of teslas or more-- due to heavy carrier masses and huge exciton binding energies. Here we report absorption spectroscopy of monolayer MoS$_2$, MoSe$_2$, MoTe$_2$, and WS$_2$ in very high magnetic fields to 91~T. We follow the diamagnetic shifts and valley Zeeman splittings of not only the excitons $1s$ ground state but also its excited $2s$, $3s$, ..., $ns$ Rydberg states. This provides a direct experimental measure of the effective (reduced) exciton masses and dielectric properties. Exciton binding energies, exciton radii, and free-particle bandgaps are also determined. The measured exciton masses are heavier than theoretically predicted, especially for Mo-based monolayers. These results provide essential and quantitative parameters for the rational design of opto-electronic van der Waals heterostructures incorporating 2D semiconductors.
Tightly bound excitons in monolayer semiconductors represent a versatile platform to study two-dimensional propagation of neutral quasiparticles. Their intrinsic properties, however, can be severely obscured by spatial energy fluctuations due to a hi
The magnetic and dielectric properties under high magnetic fields are studied in the single crystal of Cu3Mo2O9. This multiferroic compound has distorted tetrahedral spin chains. The effects of the quasi-one dimensionality and the geometrical spin fr
We directly monitor exciton propagation in freestanding and SiO2-supported WS2 monolayers through spatially- and time-resolved micro-photoluminescence under ambient conditions. We find highly nonlinear behavior with characteristic, qualitative change
Transition metal dichalcogenide monolayers are promising candidates for exploring new electronic and optical phenomena and for realizing atomically thin optoelectronic devices. They host tightly bound electron-hole pairs (excitons) that can be effici
Monolayer transition metal dichalcogenide semiconductors, with versatile experimentally accessible exciton species, offer an interesting platform for investigating the interaction between excitons and a Fermi sea of charges. Using hexagonal boron nit