ﻻ يوجد ملخص باللغة العربية
We present reverberation-mapping lags and black-hole mass measurements using the CIV 1549 broad emission line from a sample of 349 quasars monitored as a part of the Sloan Digital Sky Survey Reverberation Mapping Project. Our data span four years of spectroscopic and photometric monitoring for a total baseline of 1300 days. We report significant time delays between the continuum and the CIV 1549 emission line in 52 quasars, with an estimated false-positive detection rate of 10%. Our analysis of marginal lag measurements indicates that there are on the order of 100 additional lags that should be recoverable by adding more years of data from the program. We use our measurements to calculate black-hole masses and fit an updated CIV radius-luminosity relationship. Our results significantly increase the sample of quasars with CIV RM results, with the quasars spanning two orders of magnitude in luminosity toward the high-luminosity end of the CIV radius-luminosity relation. In addition, these quasars are located at among the highest redshifts (z~1.4-2.8) of quasars with black hole masses measured with reverberation mapping. This work constitutes the first large sample of CIV reverberation-mapping measurements in more than a dozen quasars, demonstrating the utility of multi-object reverberation mapping campaigns.
We present reverberation mapping results for the MgII 2800 A broad emission line in a sample of 193 quasars at 0.35<z<1.7 with photometric and spectroscopic monitoring observations from the Sloan Digital Sky Survey Reverberation Mapping project durin
We report the discovery of rapid variations of a high-velocity CIV broad absorption line trough in the quasar SDSS J141007.74+541203.3. This object was intensively observed in 2014 as a part of the Sloan Digital Sky Survey Reverberation Mapping Proje
We present a detailed characterization of the 849 broad-line quasars from the Sloan Digital Sky Survey Reverberation Mapping (SDSS-RM) project. Our quasar sample covers a redshift range of 0.1<z<4.5 and is flux-limited to i_PSF<21.7 without any other
We investigate the performance of different methodologies that measure the time lag between broad-line and continuum variations in reverberation mapping data using simulated light curves that probe a range of cadence, time baseline, and signal-to-noi
We investigate the effects of extended multi-year light curves (9-year photometry and 5-year spectroscopy) on the detection of time lags between the continuum variability and broad-line response of quasars at z>~1.5, and compare with the results usin