ﻻ يوجد ملخص باللغة العربية
Thermoelectrics are promising by directly generating electricity from waste heat. However, (sub-)room-temperature thermoelectrics have been a long-standing challenge due to vanishing electronic entropy at low temperatures. Topological materials offer a new avenue for energy harvesting applications. Recent theories predicted that topological semimetals at the quantum limit can lead to a large, non-saturating thermopower and a quantized thermoelectric Hall conductivity approaching a universal value. Here, we experimentally demonstrate the non-saturating thermopower and quantized thermoelectric Hall effect in the topological Weyl semimetal (WSM) tantalum phosphide (TaP). An ultrahigh longitudinal thermopower Sxx= 1.1x10^3 muV/K and giant power factor ~525 muW/cm/K^2 are observed at ~40K, which is largely attributed to the quantized thermoelectric Hall effect. Our work highlights the unique quantized thermoelectric Hall effect realized in a WSM toward low-temperature energy harvesting applications.
The Hall effect, the anomalous Hall effect and the spin Hall effect are fundamental transport processes in solids arising from the Lorentz force and the spin-orbit coupling respectively. The quant
Discoveries of interfacial topological Hall effect (THE) provide an ideal platform for exploring physics arising from the interplay between topology and magnetism. The interfacial topological Hall effect is closely related to the Dzyaloshinskii-Moriy
Dirac and Weyl semimetals are new discovered topological nontrivial materials with the linear band dispersions around the Dirac/Weyl points. When applying non-orthogonal electric current and magnetic field, an exotic phenomenon called chiral anomaly
Recent studies have shown that moir{e} flat bands in a twisted bilayer graphene(TBG) can acquire nontrivial Berry curvatures when aligned with hexagonal boron nitride substrate [1, 2], which can be manifested as a correlated Chern insulator near the
Unconventional surface states protected by non-trivial bulk orders are sources of various exotic quantum transport in topological materials. One prominent example is the unique magnetic orbit, so-called Weyl orbit, in topological semimetals where two