ترغب بنشر مسار تعليمي؟ اضغط هنا

GaAs valley photonic crystal waveguide with light-emitting InAs quantum dots

78   0   0.0 ( 0 )
 نشر من قبل Takuto Yamaguchi
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Takuto Yamaguchi




اسأل ChatGPT حول البحث

We report a valley photonic crystal (VPhC) waveguide in a GaAs slab with InAs quantum dots (QDs) as an internal light source exploited for experimental characterization of the waveguide. A topological interface state formed at the interface between two topologically-distinct VPhCs is used as the waveguide mode. We demonstrate robust propagation for near-infrared light emitted from the QDs even under the presence of sharp bends as a consequence of the topological protection of the guided mode. Our work will be of importance for developing robust photonic integrated circuits with small footprints, as well as for exploring active semiconductor topological photonics.



قيم البحث

اقرأ أيضاً

The exploration of binary valley degree of freedom in topological photonic systems has inspired many intriguing optical phenomena such as photonic Hall effect, robust delay lines, and perfect out-coupling refraction. In this work, we experimentally d emonstrate the tunability of light flow in a valley photonic crystal waveguide. By continuously controlling the phase difference of microwave monopolar antenna array, the flow of light can split into different directions according to the charily of phase vortex, and the splitting ratio varies smoothly from 0.9 to 0.1. Topological valley transport of edge states is also observed at photonic domain wall. Tunable edge state dispersion, i.e., from gapless valley dependent modes to gapped flat bands, is found at the photonic boundary between a valley photonic crystal waveguide and a perfect electric conductor, leading to the tunable frequency bandwidth of high transmission. Our work paves a way to the controllability and dynamic modulations of light flow in topological photonic systems.
We use an optical fiber taper waveguide to probe PbS quantum dots (QDs) dried on Si photonic crystal cavities near 1.55 $mu$m. We demonstrate that a low density ($lesssim 100 mu$m$^{-2}$) of QDs does not significantly degrade cavity quality factors a s high as $approx3times10^4$. We also show that the tapered fiber can be used to excite the QDs and collect the subsequent cavity-filtered photoluminescence, and present measurements of reversible photodarkening and QD saturation. This method represents an important step towards spectroscopy of single colloidal QDs in the telecommunications band.
91 - Xiang Xi , Kang-Ping Ye , 2020
The recent realizations of topological valley phase in photonic crystal, an analog of gapped valleytronic materials in electronic system, are limited to the valley Chern number of one. In this letter, we present a new type of valley phase that can ha ve large valley Chern number of two or three. The valley phase transitions between the different valley Chern numbers (from one to three) are realized by changing the configuration of the unit cell. We demonstrate that these new topological phases can guide the wave propagation robustly along the domain wall of sharp bent. Our results are promising for the exploration of new topological phenomena in photonic systems.
We report a study of the quantum dot emission in short photonic crystal waveguides. We observe that the quantum dot photoluminescence intensity and decay rate are strongly enhanced when the emission energy is in resonance with Fabry-Perot cavity mode s in the slow-light regime of the dispersion curve. The experimental results are in agreement with previous theoretical predictions and further supported by three-dimensional finite element simulation. Our results show that the combination of slow group velocity and Fabry-Perot cavity resonance provides an avenue to efficiently channel photons from quantum dots into waveguides for integrated quantum photonic applications.
We present results on electrically driven nanobeam photonic crystal cavities formed out of a lateral p-i-n junction in gallium arsenide. Despite their small conducting dimensions, nanobeams have robust electrical properties with high current densitie s possible at low drive powers. Much like their two-dimensional counterparts, the nanobeam cavities exhibit bright electroluminescence at room temperature from embedded 1,250 nm InAs quantum dots. A small room temperature differential gain is observed in the cavities with minor beam self-heating suggesting that lasing is possible. These results open the door for efficient electrical control of active nanobeam cavities for diverse nanophotonic applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا